
1

1

Comp435
Object-Oriented Design

Computer Science
PSU HBG

Week 5

2

Overview

• Introduction to Elaboration Phase
• Introduction to Domain Modeling
• Refining the Domain Model

– Modeling Generalizations
– Association Classes

3

Inception Phase

• A short requirements workshop
• Most actors, goals, and use cases named
• Most use cases written in brief format
• 10-20% use cases in fully dressed format
• Most influential and risky requirement

identified
• ...
• Plan for the first iteration

4

Elaboration Phase

• Initial series of iterations
– Core, risky software architecture is

programmed and tested
– Majority of requirements are discovered and

stabilized
– Major risks are mitigated and retired

5

Elaboration Phase

• Build core architecture
• Resolve the high-risk elements
• Define most requirements
• Estimate the overall schedule and resources

6

Elaboration Phase

• Artifacts
– Domain model
– Design model
– Software architecture document
– Data model
– Use-Case Storyboards, UI Prototypes

2

7

Domain Model

• Identify important concepts
– In the problem domain
– Using object-oriented techniques

• Domain Modeling (Domain analysis)
– Object-oriented domain modeling in the

context of the UP

8

Domain Model
• Representation of real world conceptual

classes
– In problem domain
– Not a representation of software classes

• Represented by UML class diagram
– Class attributes
– Associations relationships
– Generalization relationships

• Identify a rich set of conceptual classes

9

Domain Model
SalesLine

Item

quantity

Item

Sale

date
time

Payment

amount

Store

address
name

Register

1..*
1

1

1

0..1 1

1

*

1
1..*

1

1

Records-sale-of

Contained-in

Paid-by

Captured-on

Stocked-in

Houses

10

UML Diagrams

• UML Diagrams mean different things in
different contexts
– Conceptual perspective

• Description of things in the problem domain.

– Specification perspective
• Description of software abstractions or components

– Implementation perspective

11

UML Class Diagrams

• For domain analysis
– Essential perspective
– Elements: conceptual classes

• For design
– Specification or implementation perspective
– Elements

• design classes
• implementation classes

12

Focus on the Problem
• Do not represent software artifacts

Sale
date
time

Sale
date:Date
time:Time
getTotal():Money

Payment
amount

1 1Pays-for

Payment
amount: Money
getBallance(): Money

1 1Pays-for

UP Design Model

UP Domain Model

3

13

Building the Domain Model

• Over several iterations
– Driven by the use cases
– Common to miss conceptual classes in the

beginning and add them later
– Iterative development / refinement

14

Identifying Conceptual Classes

• Analysis patterns
– Reuse / modify existing models

• Linguistic analysis
– Noun phrase identification

• Category list
– List of candidate conceptual classes

15

Common Categories of Classes
• Category
Physical Objects
Places
Transactions
Transaction Line Items
Roles of people
Events
Record
Specifications
Catalogs

• Examples
Register, Airplane
Store, Airport
Sale, Payment
SaleLineItem
Cashier, Manager
Sale, Meeting, Flight
Receipt, Ledger
ProductSpecification
ProductCatalog

16

Example: Process Sale

1. Customer arrives with items
2. Cashier starts a new sale

Possible conceptual classes:
Customer, Cashier, Item, Sale

17

Example (cont)
3. Cashier enters item ID
4. System records sales line item and presents

item description, price, and running total
5. Cashier tells Customer the total and asks for

payment

Possible conceptual classes:
 SalesLineItem, Payment
 ProductSpecification

 (contains description, price, and itemID)

18

Example (cont)

6. Cashier enters amount tendered (cash)
7. System presents change due, and releases

cash drawer
8. Cashier deposits cash and returns change
9. System presents receipt

Possible conceptual classes:
Register (implied by cash drawer), Receipt

4

19

Example (cont)

• For completely integrated system
– May have to define more conceptual classes
– Example:

• Store, ProductCatalog, Manager

20

No “Correct List”

• A collection of concepts that the modeler
chooses

• Example:
– Should Receipt be included as a conceptual

class?

21

Possible Initial Model

• Just the conceptual classes
• Use existing names in the territory

– Use vocabulary from the problem domain
• Exclude irrelevant features

– Ignore conceptual classes irrelevant to the
requirements

22

A common mistake

• Often things represented as attributes
should be represented as conceptual
classes

Sale
store

Sale Store
address

OR

23

A common mistake

• Another example

Flight
destination

Flight Airport
name

OR

24

A Common Mistake

• No foreign keys

Office
roomNum

Employee
name
officeNum

Employee
name

Office
roomNum

OR 1

*
Works-in

5

25

Specification Conceptual Classes

• Example
– class Item represents a physical item in the

store
• Each item has a unique serial number
• All items of the same kind (e.g., XV-S400 DVD

player) have the same itemID and price

• We could represent itemID and price as
attributes of Item. Why not?

26

The two alternatives

Item

description
price
serial number
itemID

ProductSpecification

description
price
itemID

Item

serial number

*

1

Describes

27

When Do We Need This

• When there is need of description of an
item, regardless of existence of those
items

• When specifications would reduce
redundant or duplicate information

28

Another Example
Flight

date
number
time

Airport

name

Flies-to
1

*

Flight

date
time

Airport

name

FlightDescription

number

Described-by
Describes-
flights-to

*

1

1

*

30

Domain Model: Adding Associations

• Association
– Relationship between instances of conceptual

classes
– Relatively permanent relationship

Sale Register
0..1 1

Captured-on

31

Typical Associations
• A is a physical/logical part of B

– Wing-Airplane, Finger-Hand
SalesLineItem-Sale, FlightLeg-FlightRoute

• A is physically/logically contained in B
– Item-Shelf, Flight-FlightSchedule

• A is recorded/reported/captured in B
– Sale-Register

• A is a description of B
– ProductSpecification-Item

6

32

Typical Associations

• A is a member of B
– Cashier-Store

• A uses or manages B
– Cashier-Register, Pilot-Airplane, Manager-Cashier

• A is related to a transaction B
– Payment-Sale, Reservation-Cancellation

• A is owned by B
– Airplane-Airline

33

Finding Associations

• Consider the typical categories
• Focus on associations that are relevant

with respect to the use cases

34

Examples
• SaleLineItem-Sale

– A SaleLineItem is a logical part of the Sale
– Needed in the context of ProcessSale use case

Sale SaleLineItem
1 1..*

Contains

35

Examples

• ProductSpecification-ProductCatalog
– “Contained-in” relationship

Product
Catalog

Product
Specification1

Contains

1..*

36

Examples

• Payment-Sale
– Two related transactions

Sale Payment
1 1

Paid-by

37

Associations

• Roles – each end of association
– name, multiplicity, and navigability

• Level of detail
– Emphasize “need-to-know” but add

“comprehension-only” associations as well.
• Association names

– TypeName---VerbPhrase---TypeName
– Readable sequence: Sale---Paid-by---Payment

7

38

Association and Implementation

• In design and coding:
– Standard mechanisms to implement

associations
• In the domain model

– An association is conceptual and does not
imply that a particular implementation will be
used

39

Domain Model: Adding Attributes

• Attributes that are relevant for the
scenarios under consideration

• Example: Process Sale use case
– Need to remember the date/time of a sale in

order to print a receipt and to log the sale
– Conceptual class Sale needs date and time

Sale

date
time

40

Attributes vs. Classes

• Attributes should be simple, not complex
domain concepts

Flight
destination

Cashier
name
currRegister

Flight Airport

Cashier
name

Register
number

Flies-to

Uses

41

Common Attribute Types

• Primitive types
– Number, String, Boolean

• Other simple types
– Date, Time, Name, Address, Color,

PhoneNumber, SSN, ZIP, enumeration types,
etc…

• Attributes should only be
– value objects,
– not reference objects

42

Attribute Types as Classes

• Simple attribute type may have to be
represented as a separate class.

 Guidelines:
– Has operations
– Has other attributes
– Quantity with a unit

43

Example: Quantities

• Different quantities have units
• According to the guideline, should be

represented as conceptual classes with
associations

• But since instances are not important,
attributes acceptable too.

8

44

Example: Quantities
Payment

amount: Number

Payment

Payment

amount: Quantity

Quantity

amount: Number

Unit

…

Payment

amount: Money

Has-amount Is-in
* 1 * 1

In what unit? Not very useful

Quantity: Pure data values, so suitable as an attribute
Money: specialized quantity whose unit is a currency 45

Overview

• Introduction to Elaboration Phase
• Introduction to Domain Modeling
• Refining the Domain Model

– Modeling Generalizations
– Association Classes

46

Generalization

• Superclass-subclass relationships
• Used in the domain model and in the

design model

Payment

Cash
Payment

Credit
Payment

Check
Payment

47

Basic Idea

• Domain model
– a superclass represents a general concept
– a subclass represents some specialization

• Design
– the subclass interface conforms to the interface of the

superclass
– Software components with interfaces
– The subclass can be used at any place where the

superclass is allowed

48

Meaning of Generalization

• is-a-kind-of

Cash
Payment

Credit
Payment

Check
Payment

Payment

49

Meaning of Generalization

• All associations and attributes of the
superclass apply to the subclass

Payment

Cash
Payment

Credit
Payment

Check
Payment

Sale Paid-by
1 1

9

50

Additions

• Subclass could add associations/attributes

Payment

Cash
Payment

Credit
Payment

Check
Payment

Sale Paid-by
1 1

CreditCard Check
1

* 1

1
Identifies-with Paid-with

51

Motivation for subclasses

• The subclass has additional attributes
• The subclass has additional

associations
• The subclass is handled/reacted to

differently

52

An Example

• Is this a good idea for the POS system?

Customer

Female
Customer

Male
Customer

53

Motivation for Superclasses

• When does it make sense to create a
superclass for a set of classes?

54

Creating Superclasses
• All superclass attributes/associations

apply to all subclasses
• If all subclasses have the same

attribute, it should be moved to the
superclass

• If all subclasses have the same
association, it should be moved to the
superclass

55

Example

• POS system uses external authorization
services for credit payment

• Three different kinds of transactions:
requests, approvals, denials.

• Each has date and time
• Approvals and denials have processing

time

10

56

Abstract Classes
• If every member of class C must be a

member of a subclass, then class C is an
abstract conceptual class.

Payment

CashPayment CreditPayment CheckPayment

57

An example

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money

58

Example

• How about this?

Resource

Equipment Room

59

Association Classes: An Example
• A store uses a set of external authorization

services for payments

• Each service associates a merchantID with
the store
– The ID is provided by the store as part of the

authorization request
– Store has different IDs for different services

Store Authorization
Service* *

Authorizes-via

60

Example

• Option 1:

• Option 2:

Store
name
address
merchantID

AutorizationService
name
address
phoneNumber
merchantID

61

Example

• Attribute merchantID is conceptually
related to the association, not to the class

• Therefore: use association class to
represent attributes of the association

Store Authorization
Service* *

Authorizes-via

ServiceContract
merchantID

11

62

Association Classes
• An association class contains attributes of an

association
• An association class may be useful:

– When an attribute “does not fit” in the classes
participating in an association

– When the lifetime of the attribute depends on the
lifetime of the association

– With many-to-many associations

63

Another Example
• A company may employ several persons
• A person may be employed by several

companies
• Attributes: salary, starting date...

Company Person
* *

Employs

Employment
salary
startingDate

64

Summary of Domain Modeling
• Central focus: conceptual classes

– Associations, attributes, and generalizations
– Represented by UML class diagram

• No single correct model
– All are approximations of the problem domain
– Should capture essential domain aspects

• In the context of current requirements
– Should aid the understanding of the domain

65

Example
• You have regular files, sockets,

directories, and links.
– A directory stores files
– A link is a special “pointer” to a target file
– A file can be arbitrarily complex

• Can you draw a domain model?

66

Example (cont.)

Regular
Directory

Link Socket

1

1 1

1

**

* *

1

0..1

0..1 1
10..1

0..1

1

OR…
File

Regular Directory

Socket Link
0..1

1

1

*

69

Example

• Consider a software system for
processing course information.
Students register for courses, and
instructors teach courses. It is important
that course info is destroyed at the end
of the semester.

12

70

Example (cont.)

• Better: We can use CourseDescription

Course
name
course_id
semester

Instructor
name

Student
name

1 * 3..5 *

72

Example

• Consider a software system that has to
store info about students and their current
status in a university (i.e., freshman,
sophomore, etc.). Is this a good idea?
Why?

Student

Freshmen Sophomore Junior Senior

