

The Pennsylvania State University
The Graduate School

Capital College

A Methodology to Provide and Use Interchangeable Services
A Master’s Paper in Computer Science by Brian Fenicle

Submitted in Partial Fulfillment of the requirements for the Degree of Master of Science
February 2001

 2

Abstract:
Computing today often requires the infrequent use of many software packages. This infrequent
usage pattern does not justify purchasing full licenses and therefore motivates a need for a more
flexible way to use and pay for the usage of software. This paper describes a design philosophy,
built on CORBA, where similar services provide the same interface to clients. Services based
on this design are interchangeable, allow payment per use, handle payment conveniently, are
platform independent, and frequently do not require local installation. Clients can therefore
easily utilize resources based on application needs and services available at the time that the
application is executing. An example implementation using this methodology is also discussed.

 3

Introduction:

Statement of the problem:

In today’s computing environment people need access to many software packages and separately

purchased components of software packages in order to meet personal or business needs. Many times

users find themselves faced with needing a software component only one time or a small number of times.

In these situations, the expense of purchasing a full license is not justifiable. Currently, there are a number

of possible remedies to this problem, but each of them has limitations that make them impractical, especially

for solving business needs.

Consumers could just purchase the software. Much of the trouble of purchasing software has been

eliminated with the increased number of local retailers and the ability to download software after purchasing

it with a credit card. However, this still requires the consumer to install the product, wasting both time and

hard disk resources. Futhermore, credit card purchases are not a viable solution at companies where

purchase orders are required to buy software. Consumers are not as likely to buy software needed

infrequently because of the cost and extra effort required; therefore both the customer and software vendor

lose.

Pay per usage software is an idea that is currently gaining popularity as a means to purchase access to

software. Based on my experience working with software licensing models, I assert that in most cases the

pay per usage paradigm will be implemented as a simple count down license (also known as metering). The

pay per use software on the market today uses metering [16,8,10]. Metering has long been supported by

major licensing software vendors and is not much of a change from how the majority of software currently

works. If the software purchase is available online, then much of the normal trouble associated with

purchasing software is gone in many cases. Although the software is more easily accessible, it still requires

local installation.

 4

In some areas one can go to a store that sells customers time on a computer to use certain software

packages. The concept of kiosk machines is an improvement over purchasing the package in the typical

fashion, because we can now pay for the software only when we need it. However, there are a few

limitations here, too. The kiosk machines must be physically located near by and must also be available late

at night when people are working against a deadline. Additionally, software availability is likely to be based

on the needs of the majority and often might not meet less mainstream needs. Although installation and

local resources are no longer a concern, the drive to the store may outweigh these benefits. Currently there

does not seem to be many useful applications available in kiosks; they are limited mostly to internet access

and network game play.

The software usage models presented above mostly pertain to using whole software packages. But, there

might be more need for quick access to components of a larger software package. For instance, one may

almost never need to convert Adobe FrameMaker documents to something WordPerfect can understand.

Assume that Adobe sells a module to do this conversion separately from the rest of FrameMaker, but

FrameMaker has a menu option to make this conversion. In this case FrameMaker users clearly do not want

to purchase the module for a one-time need. Nor is FrameMaker likely running on the local kiosk machines.

It is easy to see that any type of file conversion follows the same idea. This type of usage dictates that

such software components are available in a form that can be used by the program without requiring too

much intervention from the user. Again, we see that current models for obtaining software are not

convenient for potential users.

Software that requires frequent updates by the user is another good reason people should be able to access

software in a more convenient fashion. Consumers should be able to access the newest functionality

without the administration of making software updates a few times a year, especially when they may only

use the software a few times in a year.

 5

Additionally, consumers may need access to some powerful computing resource that is used too

infrequently to purchase. For example, 3D CAD models of electrical connectors are created in a CAD

package. At certain points in the creation of new connectors, an electrical properties analysis is required.

The electrical analysis package is expensive and requires vast amounts of computing resources. This

scenario motivates the need to pay for such service when used and to allow that service to run on high end

machines not owned by the customer (high end machines might be owned by the customer, but would not

be required at the desk of each user). This saves the company money in both hardware and software.

Furthermore, multiple companies may provide electrical analysis using the CAD model from a particular CAD

package. A consumer should be able to select the vendor based on particular details of the service

provided. For example, a cheaper service might provide the results in 4 hours while a more expensive service

might return the analysis in 1 hour. Certain services might provide a higher level of precision in the

calculations. Interacting with these services in a consistent manner allows the customer flexibility and

promotes competition as a side effect.

Additionally, certain low-level services should be available in such a way that they are accessible by other

programs. Imagine a personalized electronic subscription to a magazine. A customer gets only the articles

of interest. It should be easy enough to retrieve articles by entering identifying information about the

magazine and user identification credentials. Traveling users might prefer to view these articles from a word-

processor when at home, but might be forced to view them from a web browser when they are out of town.

The idea is that there are services that require some simple information to access and return a basic text (or

html) stream. The returned data can be handled by any number of existing products and should not be

restricted to certain applications. Even if there is a special application that handles electronic magazine

subscriptions exceptionally well, there is no reason it should be limited to one particular magazine.

Obtaining the articles is a simple function that should be very similar for all electronic subscriptions, so this

application should be able to work with all magazines. Additionally, customers should not need to subscribe

on a yearly basis. Customers could pay per article or per issue they choose to access.

 6

Clip art could be accessed similarly. Users may have access to a number of clip art repositories, accessed in

a standard manner, that charge per image downloaded. Again, a more convenient paradigm for using

computer-based resources is needed.

Characteristics of a good solution:

A solution to the above problems should have all of the characteristics listed below. Quite simply,

customers should be able to purchase software on demand and use it. Customers should not be required to

enter user name and password to access this service (we all have too many names/passwords now, who

needs more?). If users can access services in a generic manner there is no need for special installation or

configuration by the user.

Users of such a system should be able to pay for services in some familiar manner. This means that creating

some form of e-money is not a reasonable option. Credit card transactions seem to best meet the needs of

the system while remaining familiar to most users.

In many cases the functionality offered can be used without installing software locally. Many common

services require little input and generate little output, and are therefore reasonably run on remote machines.

Admittedly, certain packages may require local installation, but could still be licensed using a pay per use

model that is largely transparent to the user.

The user should not be required to interact directly with the service, but the service should be able to

describe itself when requested by the user. This becomes especially important when multiple services are

available to do the same job, as in our electrical properties analysis example. The idea that a customer would

have a choice further demands that services are easily comparable to other services that provide the same

functionality. The consumer will get the best selection, service, and price when competition is supported.

 7

Services should be interchangeable. This means that a client should be able to talk to all software that

provides the same service using the same interface. The interoperability of services helps prevent

customers from being limited to a particular vendor and promotes competition. Furthermore, an

interchangeable service can easily be replaced with a comparable service, based on availability. This

provides some level of fault tolerance, since users have the ability to choose another vendor when their

preferred vendor is having system trouble. The idea of interchangeable services also dictates that users

don’t care what platform the service is running on.

When financial transactions are involved, users demand security. Furthermore, some services might

consume or generate sensitive information. These services should be able to provide a level of security as

required by the nature of the exchanged data. Users of the system will also have varying interest in security

of the data exchanged, so the services should be able to negotiate the details of the security with the user.

The actual financial exchange should be safely conducted through an existing tool that is readily available

and familiar to prospective customers.

The design goals of such a system listed above, are restated here in order of importance.

1. Services should be interchangeable, which implies they should have a consistent interface. This means

that using a service should require little user interaction. Any interaction should be simple. This also
means that the transactions related to obtaining a service should be largely transparent to the user.

2. Payment for using a service should be convenient. This requires a system with no additional
passwords and a convenient method of payment. This means that paying for a service should be
largely transparent to the user.

3. Software and components should be available on a pay per use basis.
4. Clients should be able to use a service regardless of the platform the client software runs on.
5. For basic services no local installation should be required.

Some of these goals are met by existing systems and are discussed more in the ‘Related Work’ section.

In the following, we describe a solution that meets all these goals. This description has been split into three

primary parts. Security is an issue throughout this work, but is discussed separately after the methodology

is clear. A breif section on the business motivation completes the section.

 8

The first part of the section ‘Problem Solution’ covers the definition of services so that they can be used

interchangeably. The paradigm, described by the goals above, is referred to as the Interchangeable Service

Model (ISM). As described in the ISM, service implementations follow a simple development methodology

that promotes a stable system in which programs can access services in a well-defined manner.

The second section describes a sample implementation, for the sake of clarity, but standard CORBA and

Java provide most of the functionality. The primary goal of interchangeable services promotes hiding

transaction details from the user. Hiding the details allows users and larger software packages to leverage

existing functionality in a convenient and consistent manner. Since the primary goal is interchangeable

services, this imp lementation is called Interchangeable Service System (ISS). ISS allows programs to use a

type of service with little or no vendor specific interaction from the user (clearly the user will still need to

make a menu selection or enter criteria for selecting the service).

The third section of the ‘Problem Solution’ relates to how a client should pay for using a service in a non-

obtrusive manner. This section describes a technical solution to payment that is modeled on the use of

credit cards in retail purchases. This solution for payment services gains flexibility by drawing on the

implementation methodology for interchangeable services. The availability of a financial service and easy

access to services combine, forming a system in which users can conveniently access software and pay for

services on demand.

The fourth section covers some details of security required by ISM. Since security is not the main goal of

this project, we address primarily the security measures that should be in place for such a system to be

feasible. This section also covers the example security implemented as part of ISS.

The fifth and final section addresses the important issue of why companies would choose to make software

available with the restrictions imposed by this methodology. This section is not intended to provide full

 9

coverage of the business issues involved, but attempts to persuade the reader that such a system is

practical.

Most computer users could benefit from software that is convenient and flexible in the manner described

above. Such an extension to the current software licensing paradigms allows more flexibility and therefore

increased productivity for users. Customers could more quickly satisfy their business and personal needs.

Software built on these principles, such as ISS, adapts easily to changes in the environment (i.e. the

introduction of new service providers or unavailability of a certain service provider) and promotes the reuse

of existing components.

Background:

CORBA (Common Object Request Broker Architecture) is a specification that abstracts communications

between software modules. In technical terms an implementation of this specification is considered

middleware. This abstraction frees the software module from concern over the programming language or the

hosting architecture of the object it communicates with. CORBA implementations allow methods to be

invoked on remote objects and handle the details of the required communications; remote method

invocations look just like local method invocations in the program’s source code. CORBA also specifies

additional services for objects to find exporters either by name or object type. Implementations of CORBA

are well suited for enterprise and internet computing, since they are able to find other objects and use those

object regardless of platform[2,6].

In practice CORBA implementations are purchased from an ORB vendor. The core services as defined by

CORBA are either purchased from the ORB vendor or from another vendor. These services are not strictly

required, but they provide important functionality when developing applications. Visibroker for Java from

Visigenic/Inprise[11] provides the ORB used for ISS and Prism Technologies provides the OpenFusion suite

 10

that contains the Trading Service [17]. Other core services include the Naming Service, Transaction Service,

Event Service, Time Service, Collection Service, and Security Service.

Objects in a CORBA system must understand other objects in the system. We need a common way to

describe objects to promote mutual understanding, even if objects are written in different programming

languages. IDL (Interface Definition Language) is a programming language-independent wayfor

programmers to describe their objects in CORBA. IDL syntax is very similar to C++ syntax. Most CORBA

implementations allow the programmer to define their objects in CORBA IDL, then generate some of the

required source code in the language chosen for the implementation. This code combined with the ORB do

almost all the work required to enable objects for networked use.

To understand ISS we can assume that the network communication portions of Visibroker work; however,

we need more understanding of the Trading Service. In general the trading service allows objects to register

their existence in the system. Objects register some key information allowing other objects to query the

Trading Service for objects meeting certain criteria. This is a more powerful choice than the Naming Service

where all objects must be located based on the name of the object. There are a number of important details

that must be considered to understand Trading Service.

A service type defines a logical grouping for use by the Trading Service. Any object in the system may

register as a member of a group as long as the service type has been defined. A service type defines a

template with one or more property names that serve to describe members of that group. In programming,

this concept is analogous to defining a class in C++, then requiring all objects to fill in the values for the

data members. Also as in C++, a service type can be extended through inheritance. Each object that

registers as a member of a service type, known as an exporter, sets the property values that correspond to

the property names defined by the service type. Property values can be set only once, any number of times,

or can be dynamically defined. For example, we could define a service type of VideoRental. This service

 11

type might have a property name ‘cost’ which has a corresponding value of type double, since it will

represent a dollar value.

An object that registers with the Trading Service as a VideoRental service type must fill in values for that

service type according to the rules specified . In our example, a specific video object might register as

having a cost of $3.75. When an object correctly registers, the result is called a service offer. Objects use

information in the service type to find the property names they are interested in, then use the property

values from the service offer to find an object of interest.

A service type may be defined to contain dynamic properties. An exporter does not supply a value for a

dynamic property when it registers with the Trading Service. Instead the Trading Service waits until an

importer requests that value for some service offer. At that time, the Trading Service asks the exporter for

the value and returns it to the client object. One can see where dynamic properties might come in handy for

a greedy VideoRental that wants to raise the prices on weekends.

Now that we understand how objects would register with the Trading Service, the next topic to consider is

how to find a particular object from the myriad of objects registered in the system. The most logical way to

focus a search would be to search only for objects of a certain service type. This type of search is

supported by the Trading Service and is a realistic choice for static CORBA programs. So, in our example

we would search for all objects registered as VideoRental service type. Since this is likely to produce more

than a single match, we can further constrain our search based on property name and value pairs and order

the returned matches according to property values. So, bargain shopping objects might search the system

looking for VideoRental (service type) with a cost (property name) < 2.00 (property value). Furthermore, the

Trading Service can sort the results of a query. For example, a bargain hunting service may request the

Trading Service return Video Rental objects listed from least to most expensive for the VideoRental with the

title A River Runs Through It . Property names and values can be used as search criteria without the

restriction on object type, but searching by object type is the only search used in ISS.

 12

Problem Solution:

The design goals, listed in “Characteristics of a Good Solution”, are conceptually very simple and appealing.

However, there are many tools and approaches that could be used to create a reasonable solution. Java and

CORBA have been selected for this implementation. These tools supply the building blocks for a

methodology that provides access to services in a generic manner to applications running on non-

homogenous platforms spread across a network. The combination of these tools leads to a solution that is

complicated to develop, but has many advantages. Services are also responsible for registering themselves

as available and supporting a registered service type. Once created, services of the same type can be

accessed generically by objects interested in that particular type of service.

Methodology for Creating Interchangeable Services:

Since creating and using objects in an interchangeable fashion is the most important component of ISM and

the example implementation, we will consider it first. We generally understand, from the background

section, that services should be created and registered with the Trading Service such that importers can

access them exactly as they access all offers of a given service type. This means that each service

implemented must offer the same interface and register under an equivalent service type. In this case, the

property names will all be the same, as defined by the service type, but the property values can be used to

distinguish among available services. Therefore, each service that corresponds to a given service type will

register as such and provide the property values specific to this service offer. Now the client can access a

number of services (of the same service type) in a consistent manner and can select a service based on the

property values. Once a client obtains a reference to a specific object via a service offer, all the methods

defined in the interface can be used. The example client and service, discussed later, will help clarify how

these concepts are implemented in practice.

It is important that all offers that provide the same type of service register with the Trading Service under

the same service type. This simplifies the search for matching services and provides stability in the

 13

properties a client should consider when selecting a service provider. A service provider might like to

introduce a new service type that extends an existing service type so that they may provide some additional

functionality not provided by the original service type interface. Although this is acceptable in the CORBA

model, this sort of behavior detracts from the consistency of the Interchangeable Service Methodology.

As mentioned in the design goals a service should be available on a pay per use basis. This simply means

that designers of systems should provide code to manage the payment transactions. However, all services

should handle the financial transactions using the same interface. A good solution would be for the

financial transaction to be handled by another service. This way all services become clients of a banking

service. Handling the process of purchasing software in this manner makes paying for software more

transparent.

By basing any solution on CORBA, we enable clients to use services without concern for the computing

platform of the service provider. We are also able to use CORBA services without installing each service

locally. Java adds more platform independence to ISM (and therefore ISS), but clearly the important

platform independence is provided by CORBA.

The example implementation for this paper concerns a Translation Service. This example service and other

translation services implement a simple interface to translate from one human language to another. This is a

good example of a service the may occasionally be useful, since there are times when e-mail would need to

be translated to communicate precisely with another person. This functionality may be available as a menu

or button selection in a favorite e-mail editor. This menu selection might return a list of choices to the user,

may use the user’s configurations to select a preferred vendor, or may select the translation provider based

on some default behavior. In this way a user can take advantage of any new service providers as well as

provide some level of failover if the preferred service offer would not be available (assuming another service

offer existed for the desired translation). The example implementation, ISS, will clarify the details of the

methodology.

 14

Example Implementation of Client and Service:

Small details of the implementation will be addressed as they are required. For the sake of simplicity the

topics will be ordered as they are in the source code.

Defining A Service:

To make exporters of the same type interchangeable, each must inherit from the same type. Our example

centers on the idea of a service that can translate from one human language to another. So, each object

providing a Translation service should inherit from the TranslationServiceInterface. This assures clients

that each translation service object will provide access to at least this set of methods. The IDL definition of

the base class that should be used by all implementations of translation services is listed in Figure 1 and the

IDL definition as used in the example implementation follows in Figure 2.

// base class interface definition
interface TranslationServiceInterface {

 string translate(in string inText, in ServiceContract svcContract,
 in string creditCardNumber); //this method actually does the translation
 string textDescribingService(); // may provide more information about the service
 ServiceContract getServiceContract(); // handles the price & time details of a translation

long serviceContractIsValid(in ServiceContract svcContract); //allows customer to see
 //how long until the contract expires

};

 15

Figure 1: The IDL definition for the TranslationServiceInterface

// a particular implementation where the : indicates inheritance
interface TestTranslationService:TranslationServiceInterface {

 // no new methods
};

Figure 2: The IDL definition of a particular TranslationService called TestTranslationService that inherits
from the base class of TranslationServiceInterface

The development tools bundled with the ORB will take this definition and create most of the source files

required to support these objects. The ServiceContract object details are addressed later. The important

thing to understand at this point is that a client can now treat a reference to a TestTranslationService object

as if it were a TranslationServiceInterface object. As expected the inheritance heirarchy show in Figure 1

and Figure 2 allows us to manipulate objects of the subclass as instances of the baseclass object.

Registering a Service with the Trading Service:

When an object providing a service starts, it must first find the Trading Service. Since the normal method of

finding the Trading Service (using resolve_initial_references(“Trading Service”)) was not incorporated into

the Java ORB provided by Inprise, we must find the Trading Service using the Interoperable Object

Reference file (this is a minor coding detail that has no real impact on the problem solution). Once the

Trading Service is found, the service must first check if the service type is defined. If the service type is not

yet defined, it must be defined before the service provider can register with the Trading Service. Once the

Trading Service understands the service type, the service provider can set the property values as required

by the service type definition. Once the service type is registered and the values are set for this service

offer, the object providing the translations is available to importers.

 16

A utility class provides methods that check if the Trading Service has a service type registered. If that type

is not yet registered, the method registers it. Now the method registers the service offer using the

arguments provided by the caller. These methods are quite simple. They provide all the functionality

needed for this example implementation, but would need to be more robust to handle the complexities of a

real implementation. However, they do help a service writer register a service, with the side effect of forcing

the service to register as the preferred base type.

Property Name Property Type Mandatory or Optional
Translate_from String Mandatory
Translate_to String Mandatory
Cost double Mandatory

Figure 3: Property Structure for a TranslationService
Mandatory parameters must be defined by the exporter so that the Trading Service will present the service
offer to other objects.

The TranslationServiceInterface type is defined such that a service wanting to register a service offer must

fill in values for the following properties (as seen in Figure 3):

• Translate_from: this property is the language that should be input to the service.

• Translate_to: this property should have a string value that represents the language output from the

service.

• Cost: This property is the advertised price for the service.

Discounts may be offered based on customer or volume, but that will be finalized during the ServiceContract

negotiation. The price for a service can quickly change, since the cost property can be updated at the

service provider’s discretion. In some cases dynamic computation of the service offer’s price would be

ideal, however this feature is not supported in the example implementation. The client locks in a price during

ServiceContract negotiations.

An inheritance hierarchy can be defined in the trader. Then each service extends the base class and

registers as the base class. If a hierarchy was defined, a request for matching services based on a class,

 17

would also return any matching subclasses. The standard CORBA approach to service registration

leverages this object-oriented functionality. Since any subclass must provide at least the same interface as

the parent class, we can be assured that the service provider will understand the client’s method requests.

The ISM method is a slight deviation from the standard CORBA approach described in the previous

paragraph. Each service registers as the base type using a utility class to simplify this process. Even

though a class may have extended the original functionality, it will still be known to the clients (through the

Trading Service) as a base class object. This masking of the actual type is somewhat superficial, since a

dynamic client can interrogate the object after obtaining a reference. However, this approach lends stability

to the system and discourages coding to a non-standard version of the service type definition. This

standardization is important to stability over time. Now, all clients can code to the standard interface (this

interface should be sufficient, since in theory it would have been defined by a consortium),which prevents

frequents changes in client code. Furthermore, clients cannot take advantage of the additional subclass

functionality in static CORBA without causing exceptions.

So, at this point we have implemented the sample service, TestTranslationService as a subclass of

TranslationServiceInterface. As expected no additional public methods are provided by the service. We

proceed to register with the Trading Service as a TranslationServiceInterface type, which has the

ramifications discussed above. The distinction between the actual object type and the registration type

should be clear. If we actually knew the object type, we could use all the methods it provides (in this case

none beyond the base class). However, the clients will believe that this service is an instance of a

TranslationServiceInterface (because of its registration with the Trading Service) and will limit their use to

the base class methods. Now that the service is available, it will respond to requests from clients as coded.

In the example implementation TestTranslationService is a facade, and does no actual translating.

Code Discussion for a TranslationService:

The methods defined in the base class do not have implementations. Therefore, all subclasses must define

the specified methods.

 18

The translate() method should do the actual translation from one language to another language. For now, it

will be enough to understand that a client passes a string and some other data in, and is returned the results

in another string. The last two arguments pertain to the agreement on price and payment for use of the

service. These two items will be covered when we consider non-obtrusive payment for services rendered in

a later portion of this paper.

The textDescribingService() method takes no arguments and returns a string. This is intended to allow the

service provider a chance to explain any specialties, promotions, pricing, or any other useful information.

This method is intended to provide information to a human user. This allows a person to select a service

using more than just the information listed in the service type. For example, a person could pick between the

two services that matched his selection criteria. However, this is provided only for the benefit of the user; it

is not required to select and interact with service providers.

The getServiceContract() method allows the client to request a contract that contains start and expiration

times, the service price, and any other useful information. The simple ServiceContract object allows limited

contract negations and options and is covered in the section related to payment for services rendered.

The serviceContractIsValid() method allows a possible client to verify a contract. Knowing that agreeing on

time is impossible in a distributed system and understanding that time constraints play an important part in

contract negotiations, we see that we must be able to verify a contract is still valid with the ultimate source.

Since the contract will be measured against time as defined at the service provider, we allow the client to

easily check if a contract is still valid by returning the number of seconds until expiration.

Example Implementation of a Client Program that Uses a TranslationService:

In ISS, an importer has a few simple steps to take so that it can find and use a service. As always this client

should be able to use any service (having the same service type) in a simple consistent manner. Before a

service offer can be used the client must be able to find it using the Trading Service. It is important that all

 19

similar services register with the Trading Service using the same service type. By using the same service

type, we can be assured that the property names and interface will be consistent. Knowing that a

consortium defined the service type, we believe it will be stable over time. These two conditions allow

clients to find services in a simple and stable manner, which was a primary design goal. Once a client selects

a service based on availability and application specific code, the object reference can be used. Since the

selected service extends the TranslationServiceInterface, a client can be assured any Translation Service will

support the appropriate method calls. Clearly, the client will need to know the base class definition at

compile time. This is as expected when using static CORBA. However, it is important to note that a client

will not need compile-time access to the subclass definition, since it is only accessing base class methods.

Figure 4: This diagram illustrates the events required for a client to find a service of interest using the
Trading Service.

(1)
Register with Trading
Service

(3)
return ServiceList

EngToGerman Svc1 1.50
EngToGerman Svc3 2.50

(4)
Contact Service of choice

Client

 Trading Service

Translate from Translate to Name Cost
English German Svc1 1.50
English Spanish Svc2 2.00
English German Svc3 2.50

(2)
Request a list of
services of type
EngToGerman;
cheapest first

Service

Cost 1.50
Name Svc1
Type EngToGerman

 20

As seen in Figure 4, a client will first find the Trading service. Next the client will need to find an acceptable

service. Acceptable is defined by the requirements of each specific application. In this case, we search for

all TranslationServiceInterface services. Searching restrictions use the properties to restrict matches to only

English to German translation services. The services matching these criteria will be sorted from least

expensive to most expensive, at the client’s request. In this case the cheapest service is contacted to obtain

a service offer.

Once a client has chosen a service offer it can access the methods provided. Again, we are temporarily

ignoring the ServiceContract negotiations and payment for the service. In our case the client passes a

string of English text and gets a string of German text in return.

In the section above we have seen how a service is offered in a generic way. Consequently, clients can

access a service in a consistent manner. It should be clear that if a client program needs a translation

service it can access any of the available services using the same interface. So, a person who wants a

translation done could select this function from the menu in his e-mail editor. A few inputs may be required

from the user (alternately we could find their preferences stored on disk). A list of matching services might

be returned to the user, but is not required. Once the service provider is selected, the translation can be

completed without further user interaction. The e-mail editor can clearly access all translation services in

this manner. The system, ISS, as described above clearly meets design goal 1 listed in the “Characteristics

of a Good Solution”. Furthermore, the TestTranslationService is an example of a basic service that requires

no local installation, which meets goal 5 as well. A local installation would still be required in the case where

we are using an additional module from a larger software package or when the software has a complex user

interface, but the idea is that there are some basic services that can be used without an installation step.

 21

Non-obtrusive payment for services rendered:

Until now, we have ignored how a client and service agree on the terms for a service and how that service

provider receives payment for the service. Both of these details are critical to a successful community where

clients can access services in a predictable way. First, the client and service should agree on a price. The

details of contract pricing and expiration are at the discretion of the service provider. This means that one

service may offer discounts to preferred customers and another may not, but both will use the same objects

and interfaces. Once client and service have agreed on a price there should be a convenient way to pay for

that service. In ISS, financial transactions are modeled after retail credit card purchases. A BankService fills

the role of the credit card company in typical credit card transactions.

Service Contract Negotiations in ISS:

It is logical that an object should be used to represent all the information relevant to a contract. An object

simplifies the client/service communication and fits well in the Java/CORBA approach. This object should

be common across all service offers in the service type, but may be different to meet the needs of different

service types. An example ServiceContract object has been defined for use with translation services. The

IDL for this object is shown in Figure 5.

interface ServiceContract {
 void setContractBeginDate(in long long bd); //this is just a normal long
 void setContractExpireDate(in long long ed);
 void setContractNumber(in long long cn);
 void setContractPrice(in double cp);

 long long getContractBeginDate();
 long long getContractExpireDate();
 long long getContractNumber();
 double getContractPrice();
};

Figure 5: The IDL for a service contract object.

 22

The long values are to represent milliseconds since 1970. Milliseconds were used for simplicity. The double

value holds a dollar value that represents the price of a transaction. The first four methods are for use by

the service program creating the object and the last four are for use by the client program. At this point

there is no security to prevent the client from changing the ServiceContract object other than security

measures implemented in the service provider that issued the ServiceContract. In ISS the service contract is

validated and is expired to prevent contract modification and reuse.

(1) Client requests service contract.
(2) Service contract is returned.
(3) Client requests the service according to the contract.
(4) The service provider requests a funds transfer.
(5) The Bank confirms/denies the transaction.
(6) The results of the service are returned to the client.

Figure 6: This diagram shows the way client, service, and bank service interact with each other during
contract negotiations and payment for the service.

Figure 6 shows the steps involved in contract negotiations. This example definition of a service contract

only allows one round of negotiation. The client requests an offer and can either choose to accept or

(2)
(3) (1)

Any Service

Client

Bank Service

(6)
(4) (5)

 23

decline. Furthermore, the contract and pricing information are limited to US dollars. In a real life situation,

this limitation would not be acceptable. Currently, contracts must be handled by each service. Since the

ServiceContract should be the same for all services of the same type, client code can easily able to deal with

these contracts. This constancy also enables all services to reuse library code that deals with the

processing involved with contracts.

Since price changes are such a simple matter, we can expect prices to change frequently. ServiceContracts

allow the price of a transaction to be fixed. Now that a customer has a fixed price, he can make his final

decision on purchasing the service. If the customer would like to purchase the service, we expect him to

pass the Service Contract object back to the service provider, pass his credit card information, and any other

application specific data structures. In the running example, the client will pass only a string in addition to

credit card and contract information. We expect a service to bill the client’s account when the transaction is

complete to prevent a client being billed for a job that did not complete as expected (i.e. a crash occurred).

Payment for the Service:

Now that we have a client and service provider that agree on a price for a service, we need a banking service

to provide the banking transactions. In our normal lives as consumers, we frequently use a credit card to

pay for goods and services. We establish identity and credit limit with this one company. All participating

vendors honor our payment via that banking service. This situation allows us to purchase goods without

having to reveal much about ourselves to retailers and is familiar to most people. It would be desirable for

software to be purchased in the same way.

We have a need for an online credit card service. In ISS, the interface for the credit card based transactions

is defined in the BankServiceInterface class. The example implementation of the BankServiceInterface is

called FunnyMoneyBankService. An interface is defined for all BankServices, so that all access is

standardized. Clearly, this is just another service implementation based on ISM. It seems likely that there

will be more than one credit card-like service available in the world, so the interchangeableness makes sense.

The BankServiceInterface defines a rudimentary banking interface. All credit card-like services in an

 24

implementation, like ISS, would inherit from the BankServiceInterface IDL definition presented in Figure 7.

The IDL for FunnyMoneyBankService, which inherits from BankServiceInterface, is listed in Figure 8.

interface BankServiceInterface {

 exception TransactionDeniedException{};
 string creditCardTransaction(in string amount,
 in string fromAccount,
 in string toAccount)
 raises (TransactionDeniedException);

}; //end of bankService decl

Figure 7: The IDL for a Bank Service that will provide credit card-like transaction between clients and
vendors in the system.

interface FunnyMoneyBankService:BankServiceInterface {

 // no new methods, see base class

};

Figure 8: The IDL for an example bank service called FunnyMoneyBankService that has no additional
public methods beyond those dictated by the base class. The bank service might contain other classes, like
Account, that are used in processing. These methods and objects are private and therefore not exposed in
the interface.

The BankServiceInterface defines the methods that a minimal credit card-like service might offer. The

BankService in ISS works similarly to a normal credit card. The customer and merchant account numbers are

supplied with the amount of the transaction. Figure 6 shows the steps involved in payment for service. In

this case, an exception has also been defined to notify the caller of error situations. The

TransactionDeniedException in Figure 7 lets the caller know that the transaction was denied, but gives no

further explanation. A more powerful solution would have more precise exceptions, but this serves as an

example of the correct approach. A credit service like the FunnyMoneyBankService will have lots of

 25

information about its customers and many rules about transactions. In the example implementation, the

example bank service will not allow a person to exceed their credit limit. It will not allow manipulation of

funds in a non-existent account, and so on. The business rules and the data stored in the example bank

service are not important for this example, so we can assume it works reasonably.

This section has described how a customers pay for a service they want to use. The idea is simple and

mostly transparent to the user. Using credit cards leverages existing financial infrastructure and financial

tools already possessed by the customer. Since customers do not have an account with the vendors, there

is no need to remember extra passwords or handle billing from each individual service. Clearly this payment

arrangement meets the second design goal of the system, convenient payment, and at the same time

supports the pay per use paradigm, which was design goal 3.

Security Features of the System:

CORBA traditionally controls who can access a particular object through an access control list (ACL). This

administrative burden is not acceptable for the system described in this paper. The idea of a service

contract places the burden of authorization on the exporting object, so we no longer need the ACL to

enforce such rules.

A distributed system such as ISS without secure communications is not feasible. In the proposed system,

there are two separate needs for security. First we must secure the information involved in the financial

transaction. Second, we must secure the information exchanged between a client and a service provider.

The final two sections on security discuss the CORBA Security Service offerings and a way that all

communications could be secured.

Financial Exchange Security:

A number of reasonable options are available for securing the exchange of financial information. In ISS,

credit card information is sent out in the clear to the vendor. Unfortunately, it is all too easy to dis cover the

 26

account information while it travels on the network. One reasonable solution would be to encrypt the credit

card number using SET (Secure Electronic Transaction), a financial industry standard, or some other

standard encryption scheme [5]. In this manner, neither the vendor nor hackers would be able to “see” the

credit card number, but the bank could still verify the accounts in question to make the funds transfer.

Public key encryption could also be used, so that the bank could be certain that the credit card belonged to

the supposed user.

Security of Data Exchanged During Service Transaction:

So far we have ignored the security of data exchanged between the client and service provider. Some data

might not require any security at all, while other data may represent proprietary information and require very

stringent security measures. The ISS implementation uses public key encryption combined with symmetric

encryption to securely transfer the text input and output of the translation service as an example of a

possible solution. The steps involved in securing data in the example implementation are shown in Figure 9

below. In the example translation, only the text string is encrypted. The financial information is transmitted

insecurely. For application specific data, simply securing all communications would be better than no

security at all. However, a variable level of security negotiated between the client and service would be the

best solution.

 27

Figure 9: This diagram illustrates a sample exchange of information between a client and the
TestTranslationService. Note that not all communications are secure, particularly the credit card
information.

CORBA Security Service:

SECIOP (Secure IOP) is now available as part of the CORBA Security Service. This allows all

communication to be secured, but does not allow the level of security to change based on user needs.

Although this would be better than no security it is not the best solution for the system described. When

the project began, there were no implementations of the Security Service freely available.

Additional Ways to Secure All System Communications:

Visibroker has hooks built in so that programmers can insert code to encrypt all inter-object

communications. NetCrusader has used these hooks to deliver a product that does just that [9]. These are

Client
 Service

Request ServiceContract

Contract Returned

Send Public Key

Send Public Key

Translate Text using encoded Text,
SvcContract & Credit Card #

Return translated text encrypted

 28

different security approaches available, but using any of these is outside the scope of this project.

Additionally, the NetCrusader product was not freely available during the implementation of ISS.

Any solution for securing the inter-object communications should be flexible. The client and service

provider should agree in the type and strength of security that will be used for the exchange. Secure

Sockets Layer (SSL) is based on this principle, and therefore might be a good choice. SSL over IIOP

(Internet Inter-ORB Protocol) exists and is now provided separately from the Security Service, for the

Visibroker product. This product was not freely available during the implementation of ISS

Ultimately the security features of the system as it is implemented are insufficient. However, one of the

above methods could be employed to transform ISS in to a secure system. At this time, it seems that SET

should be employed to manage the financial portions while SSL should be the solution to provide the

flexibility desired for client/service communications.

Practical Application in Business:

For service providers, ISM makes the most sense in service areas where there are few providers of a

particular service, and in cases where a large company dominates, but there are many other smaller service

providers.

Translation is an example of a service where there are currently few providers, although, there are some free

rudimentary services available on the Internet. In this case the involved parties all benefit from the

standardization, because the services become more visible and accessible to prospective customers. Since

there is clear motivation for consensus and the interface should be technically simple, we can conclude that

a standard interface will be agreed upon. The group might form a consortium, working together to produce a

simple user interface to access translation services. Translations available will likely range from those done

quickly by machine to those done precisely by bi-lingual humans. Although many of the service providers

will offer the same service, speed, cost, and quality will differentiate them from one another.

 29

In the situation where there are many small companies and a few large companies in a market, the larger

companies often control the market share. In this case the smaller companies are clearly motivated to work

together to take market share from the larger providers. Thus, the smaller companies will have a strong

motivation to find a common interface, while the larger companies will likely not participate in the interest of

protecting their advantage. The larger company might then be forced to participate, as their competition is

providing a desirable feature to customers.

In the above ways, communities will form. Others will choose to join to make their product available to

another market segment, while others will participate at the request of their customers and potential

customers. Participating in such a community becomes another marketing tool. Indeed, an infrequent

customer may eventually use the product enough to purchase a full license, the financial mainstay of the

company.

Related Work:

There are a number of systems in use or proposed that share certain features with ISM and/or ISS. The first

section covers ideas similar to ISM, but not close enough to merit detailed discussion. The final two

sections more completely cover implementations that are most similar to ISS.

Similar Ideas:
The systems described below demonstrate that the pay per use paradigm has found a place in the software

industry. Most of these are simple proprietary examples of a concept less generic than the goals of ISS. In

most of the examples below one must install the software first, then pay for the usage. This type of pay per

use model meets only one of the design goals of this system. In these cases, where the software package

must be installed locally, the proposed paradigm for purchasing usage would save users the work of calling

the vendor to purchase more usage.

 30

Pay Per Clik is a pay per use Application Service Provider. The company promotes the idea of paying per

use instead of the monthly-based fees typical of Application Service Providers. They simply offer the

service of billing the customer for fine-grained usage, for which they take a percentage of the profit. They

enable metering of software to prospective customers. Pay Per Clik shares the pay per use goal, but does

not attempt to provide services that are interchangeable [16].

e*ECAD Inc. is offering its chip design software for use by pay per use and pay per hour licensing. This

will allow customers to access the tools for minimal cost based on usage rather than purchasing the

software for thousands of dollars. This is a good example of how one might install software locally, then

pay for only the time it is used. This is a proprietary solution that does meet some of ISM’s design goals,

but it does not meet the requirement that services are interchangeable [8]. Face2Face Inc. provides their

facial motion analysis software similarly. In this case, the customer pays based on the amount of video

processed by the software [10].

Lacert provides programs to accountants for calculating state and federal taxes. The state tax returns can be

purchased for a one time unlimited usage fee or in a pay per use model. The easy segregation of the

components by state and infrequent need for an accountant to do an out of state return makes this model

appealing for both parties. This practice has been going on for a number of years in tax software. Lacert

may have implemented the software so that all state tax returns have a standard interface to obtain the

license. Since the processing is done locally, one objective of interchangeable services has not quite been

met. This model is like purchasing separate components of a larger system. Lacert’s system requires a

phone call to purchase a license, which could be mo re convenient. Currently, there are efforts to allow

customers to purchase licenses online, but it will not be transparent to the user [3].

Kala:
Kala [4] is a system that is more similar to ISS. Kala is quite different in implementation strategy, but shares

enough design goals that further discussion is appropriate. Kala is an API to create licensing schemes.

 31

Therefore, it can be used to license software in the standard way, pay per user, or to license software using

the pay per use paradigm. Components and resources in Kala are very similar to services as presented here.

Kala Overview:
When using Kala a user negotiates pricing with the resource. This price is “provisional”, which means

estimated, since the component might use another component and incur higher charges than expected.

There is a maximum and minimum provisional charge provided before the client makes the purchase. After

the two parties agree on the provisional charge access is granted to the component. Charges are only

incurred if the resource is used. The actual charges are handled by the resource manager once both parties

agree (it also does some sanity checking on the real charges against the estimated charges). Each

component is responsible for computing billing information based on its particular billing algorithm. All

interactions between user and resource are conducted in meter units, not normal currency. Billing reports

are generated by the resource manager using meter units. Conversion to real money and actual billing must

be handled by a bank-like entity. Users may have credits added to their account through the exchange of

cookies with the vendor. Using cookies, a customer can securely purchase meter units to be used at a later

time.

Some Specific Points:
The resource manager is responsible for uniquely identifying the resources and the clients (clients are also

resources, but we will call them clients to be clear). Storing all the resource information in one place is

subject to a single point of failure. Maintaining a list of clients is an extra administrative step that can be

avoided if users do not need local accounts. In a CORBA system, the Trading and Naming services handle

the identification of resources. It is preferable to use the existing functionality of CORBA rather than re-

inventing code to handle services for joining and leaving a community.

Service contracts in ISS have no user accounts associated with them, since customers have no local

accounts by which to reference them. However, service contracts apply to a specific service and maintin

expiration information. Licenses in Kala maintain the expiration and related resource, but also maintain the

 32

user information about the user who was issued the license. There is a distinction to be made. Service

contracts by themselves are only a promise to provide a service at a particular price until some expiration

time. The ServiceContract must be submitted with payment to actually use a service. A license is prepaid

and entitles the bearer to use of the service within the restrictions imposed.

Cookie exchanges in Kala allow the user to obtain enough meter units to access a resource multiple times

without requiring a financial exchange for each use. Meter units are exchanged for each use of a resource.

Although this reduces the number of financial transactions, it requires users to have accounts with each

resource to allow tracking of meter units purchased.

Kala handles the revenue collection by moving the credits from the user account to the supplier account.

There is a separate billing step where meter units need to be converted and billing must be done. The entity

that does the conversion and periodically pays those resources with a positive balance is nebulously

described. ISS does not deal with meter units for two reasons. First, this is a big responsibility; savvy users

should be wary that this account transfer is indeed safe and correct. Furthermore, reusing existing financial

solutions is preferable to creating a new non-standard solution.

Second, there are plenty of financial institutions that exist just for securing financial transactions and

handling billing. Why reinvent the wheel?

As in ISS, Kala intends to make paying for each use transparent to the client. Exchange of metered units is

transparent, but the actual financial exchange is not. In [6], the financial exchange appears to be an offline

process. This model may be acceptable to users who purchase all their software from a few vendors, but is

not as transparent as in ISM.

Much of [4] walks through examples of how Kala can handle various forms of licensing. Much of that

discussion focuses on installing software locally, then paying per use. This usage model is addressed by

ISS as well. In ISS, an installed application might have menu options that allow the user to pay for some

 33

amount of usage and results in a license file being downloaded to their machine. Software that anticipates

repeated use by individual clients might support a slightly different contract model or may handle the details

of the service contract somewhat differently than in the TranslationService example.

Partly because the authors intend for components to use other components as needed during execution,

Kala involves a complex system of estimated and actual charges. This means that the cost for a “run” is not

known until execution is complete. A simple system of paying a clear fee up front is preferable. In ISS, the

advertised fee for a system could be dynamically generated based on the nature of the client’s request

resulting in a sum of the cost of services used indirectly. However, the paradigm described in this paper is

limited to static up-front charges and no provisions have been made for variations during service execution.

The authors of [4] point out that the system should be recursive, meaning that resources can use other

resources. It should be clear that ISM supports a service using other services. For example, all services use

a Bank Service.

Kala is a reasonable system to provide licensing for software a user already has and also works nicely to

activate specific separately purchased features of the software. The ability to activate specific components

was a design goal this project shared with Kala. However, it does not manage interchangeable resources in

a generic reusable manner, which is an important design goal of the described system. Ultimately the

distinction is that Kala is an API for licensing software and components, while ISM primarily focuses on a

methodology to allow the purchasing of services that are interchangeable.

JINI:
ISM shares a number of design goals with JINI, although the implementations use some different

technologies. JINI is a layer on top of Java provided by Sun Microsystems Inc [1]; ISS combines the use of

Java with CORBA.

In both systems we have the idea of obtaining a contract with another resource in the system. The two

parties involved work out the details of this agreement. In JINI these leases may be obtained to hardware

 34

and software resources. The idea for ServiceContracts is similar to the JINI leasing approach. In JINI leases

can automatically renew themselves. However, leases have no concept of paying for resource usage as in

the Service Contract model. JINI is intended to allow resources to find each other on an internal network, so

charging for usage is not an important consideration. Leases in JINI are defined for the entire system. This

means that all services use the same lease object. This model is an advantage for JINI because all resources

use the same lease object. ISS provides the flexibility for different types of services to have different

contracts when required.

In both systems programs look for available resources matching the program’s needs at run time. We will

use printing to illustrate the similarities between JINI and ISS. When one needs to print a document, the

word processor finds all printers available. From that list, clients select the service that is closest or has the

features needed. By not relying on a specific printer, a user can avoid problems when that particular printer

is not available. In JINI, this is referred to as the lookup and discovery protocol. In a CORBA based

system, the Trading Service functions similarly to the look-up service in JINI.

JINI programs, both client and service, are limited to Java (with the exception of wrapping other

programming languages, like C). Clearly a CORBA based system has the advantage of not limiting the

programming language of the client or the service provider.

In both systems we have the idea that there are standard components that should have a common interface.

If we continue the printing example, we realize that all printers do the same basic thing and have some

common features. For example they have a location in the building, they may support double-sided printing,

may support color printing, may support certain file formats, and may support a number of printing

resolutions. So, all printers should have a common interface that can be accessed by other programs.

Through the interface we should be able to ascertain the features of a particular printer, and send our print

job to the printer we have selected. In both systems a common interface must be defined and each service

must implement that interface.

 35

Ultimately, JINI and CORBA share a number of ideas, many of which were critical to meeting the design

goals of this project. However, JINI limits users to the Java programming language where a CORBA based

system does not. Additionally, JINI does not directly support the pay per use model.

Suggestions for Further Work:

This example Bank Service accepts all charges that are proposed by the vendor. In normal credit card

transactions we have signatures and shipping addresses to provide some checks on legitimacy. When

working with computing resources, we have eliminated both these checks on the system. A reasonable

solution would be for the bank to contact the client for approval of the proposed charges. A better

alternative would be for the client to notify the Bank Service that it will accept charges of some amount from

a specific vendor. Then the Bank Service can be sure the charges are legitimate if it can positively identify

the customer (via public key or some other security means).

The security model could be extended as described in the section ‘Security Features of the System’. Since

Security was not a main focus of ISS, the example service implements encryption on a small part of the

exchanged data, simply to show that it could be done when required. As mentioned, a combination of SET

and SSL should be adequate. Using an implementation of the SET standard would require significant

changes to the current architecture of ISS. Using public key encryption for just the credit card numb er

would be simpler to integrate, but requires that we have a key server. A reasonable security model would

eliminate the need for the suggestion in the paragraph above, since we could now assure the legitimacy of

both parties in the transaction.

This system focuses on using services infrequently and generically. Certainly there is a need for pay per use

software that will be used more frequently. This system requires the negotiation of a contract and a

financial transaction for each use of a service. While this model is appealing in its simplicity, it results in

 36

unnecessary overhead when the service is accessed frequently. The paradigm used by Kala might prove to

be a better solution when the service is accessed routinely. If a customer could purchase some number of

meter units, we could avoid the extra financial transactions and the two parties involved would simply

exchange meter units. In this scenario, ServiceContracts would be negotiated using meter units instead of

dollars. Unfortunately, this requires extra support for a protocol for purchasing meter units and more

importantly forces the client to have an account with the vendor. Avoiding a local account and related login

credentials was a design goal of this system.

A more complete ServiceContract might have the user’s credentials optionally supplied. This would allow

the service provider to offer particular users special deals or more personalized service. Additional methods

to support multi-round contract negotiations would also be an imp rovement to the service contract

negotiation process.

Conclusion:

The introduction proposed five goals for this system. They are summarized here for convenience.

1. Services should be interchangeable, which implies they should have a consistent interface.
2. Payment for using a service should be convenient.
3. Software and components should be available on a pay per use basis.
4. Services should be available on all client platforms.
5. For basic services no local installation should be required.

The primary goal of ISM was to provide access to similar services through a consistent interface. The

implementation of ISS requires services to register under a common service type and therefore similar

services share an interface. This consistency allows client programs to easily access services, even if

different vendors provide them. This design feature is a slight deviation from the normal CORBA approach.

The JINI model also supports consistent interfaces, but does not meet some of the other goals. The other

systems discussed do not meet this important need.

Payment for use of services in ISS is modeled after the credit card transaction in retail purchases. This

model is convenient and familiar to most users. This payment model eliminates the need for accounts with

 37

each service provider. Kala and many other systems require the overhead of accounts with each service

provider, which results in unnecessary administration and user interaction. As in retail transactions, the

customer has very little involvement in the funds transfer when using ISS.

Goal three suggests that a reasonable system should support a method to pay for services when used.

Infrequently used services or components motivate this goal. The pay per use paradigm is not new to

computing. As seen in the related work section, there are a number of companies providing software using

this billing model. Clearly pay per use software is an idea that is gaining support. However, these

proprietary systems are at disadvantage when compared to a system based on CORBA.

Goals four and five are inherent to ISS since it uses Java and CORBA. Client programs can be written in

Java to gain a platform independence advantage, but Java is not required to work with the CORBA services.

Hence, client programs can be written in any CORBA-enabled language as required for the particular

application, or in Java to maintain platform independence. Other systems restrict the platform or client

program implementation language, or require local installation.

Throughout this paper we have seen examples of how the flexibility of ISM, built on the five goals, benefits

the service provider and the customer. Although a number of existing systems address a subset of these

goals, ISM is unique in that it satisfies them all. Thus, the power and flexibility of ISM surpasses that of

existing systems for licensing software and for providing interchangeable services.

 38

Bibliography:
[1] Edwards, W. Keith, Core JINI, Prentice-Hall Inc, Upper Saddle River, New Jersey, 1997
[2] Orfali, Robert et al, Instant CORBA, John Wiley and Sons Inc, New York, New York, 1997
[3] Park, Robert, On Lacert Tax Returns, private conversation, Jan 2001
[4] Simmel, Sergiu et al, Metering and Licensing of Resources: Kala’s General Purpose Approach,
www.cni.org/docs/ima-ip-workshop/Simmel.Godard.html, Nov 1997
[5] Stallings, William, Cryptography and Network Security – Principles and Practice (second edition),
Prentice-Hall Inc, Upper Saddle River, New Jersey, 1999
[6] Vogal, Andreas et al, Java Programming with CORBA (second edition), John Wiley and Sons Inc, New
York, New York, 1998
[7] Chamberworks Inc., http://www.chamberworks.com
[8] EE Times, http://www.eetimes.com (article on pay-per use e*ECAD, Nov 2000),
http://www.eoenabled.com/edtn/out.asp?a=EET&i=e%2Aecad&n=33586385&tid=0&url=http%3A%2F%2F
www%2Eeet%2Ecom%2Fstory%2FOEG20001228S0014&title=Extraction+tool+features+per%2Dhour+licensi
ng
[9] Entegrity Solutions, http://www.entegrity.com, February 2001
[10] Face2Face Inc., http://www.f2f-inc.com , February 2001
[11] Inprise http://www.inprise.com or http://www.visibroker.com, February 2001
[12] Kiosk Software Inc., http://www.kioskco.com, February 2001
[13] Netshift Software, http://www.netshift.com, February 2001
[14] Netstop Kiosk Software, http://www.netstop-kiosk.com, February 2001
[15] OMG, Security Services Specification, OMG,
http://www.omg.org/technology/documents/formal/corba_services_available_electro.htm, May 2000
[16] Pay-Per-Clik, http://www.payperclik.com, February 2001
[17] Prism Technologies, http://www.prismtechnologies.com, February 2001
[18] Programmer and Reference Material for Visibroker, http://www.inprise.com/visibroker/download,
February 2001
[19] Saltmine LLC, http://www.saltmine.com, February 2001

