The Pennsylvania State Univer sity
The Graduate School

Capitd College

A Methodology to Provide and Use I nterchangeable Services
A Master’s Paper in Computer Science by Brian Fenicle
Submitted in Partial Fulfillment of the requirements for the Degree of Master of Science
February 2001

Abstract:

Computing today often requires the infrequent use of many software packages. This infrequent
usage pattern does not justify purchasing full licenses and therefore motivates a need for amore
flexible way to use and pay for the usage of software. This paper describes a design philosophy,
built on CORBA, where smilar services provide the same interface to clients. Services based
on this design are interchangeable, alow payment per use, handle payment conveniently, are
platform independent, and frequently do not require locd ingdlation. Clients can therefore
eadlly utilize resources based on gpplication needs and services available at the time that the
goplication is executing. An example implementation using this methodology is aso discussed.

I ntr oduction:

Statement of the problem:

In today’ s computing environment people need access to many software packages and separately
purchased components of software packagesin order to meet personal or business needs. Many times
users find themsel ves faced with needing a software component only one time or a small number of times.
In these situations, the expense of purchasing afull licenseis not justifiable. Currently, there are a number
of possible remediesto this problem, but each of them has limitations that make them impractical, especialy

for solving business needs.

Consumers could just purchase the software. Much of the trouble of purchasing software has been
eliminated with the increased number of local retailers and the ability to download software after purchasing
it with acredit card. However, this still requires the consumer to install the product, wasting both time and
hard disk resources. Futhermore, credit card purchases are not a viable solution at companies where
purchase orders are required to buy software. Consumers are not as likely to buy software needed
infrequently because of the cost and extra effort required; therefore both the customer and software vendor

lose.

Pay per usage software is an ideathat is currently gaining popularity as a means to purchase access to
software. Based on my experience working with software licensing models, | assert that in most cases the
pay per usage paradigm will be implemented as a simple count down license (also known as metering). The
pay per use software on the market today uses metering [16,8,10]. Metering has long been supported by
magjor licensing software vendors and is not much of a change from how the majority of software currently
works. If the software purchaseis available online, then much of the normal trouble associated with
purchasing software is gone in many cases. Although the software is more easily accessible, it still requires

local installation.

In some areas one can go to a store that sells customers time on a computer to use certain software
packages. The concept of kiosk machinesis an improvement over purchasing the package in the typical
fashion, because we can now pay for the software only when we need it. However, there are afew
limitations here, too. The kiosk machines must be physically located near by and must also be available late
at night when people are working against adeadline. Additionally, software availability islikely to be based
on the needs of the majority and often might not meet less mainstream needs. Although installation and
local resources are no longer a concern, the drive to the store may outweigh these benefits. Currently there
does not seem to be many useful applications available in kiosks; they are limited mostly to internet access

and network game play.

The software usage model s presented above mostly pertain to using whol e software packages. But, there
might be more need for quick access to components of alarger software package. For instance, one may
amost never need to convert Adobe FrameMaker documents to something WordPerfect can understand.
Assume that Adobe sells amodule to do this conversion separately from the rest of FrameMaker, but
FrameMaker has a menu option to make this conversion. In this case FrameMaker users clearly do not want
to purchase the modul e for aone-time need. Nor is FrameMaker likely running on the local kiosk machines.
It iseasy to seethat any type of file conversion followsthe sameidea. Thistype of usage dictates that
such software components are available in aform that can be used by the program without requiring too
much intervention from the user. Again, we seethat current models for obtaining software are not

convenient for potential users.

Software that requires frequent updates by the user is another good reason peopl e should be able to access
software in amore convenient fashion. Consumers should be able to access the newest functionality
without the administration of making software updates afew times ayear, especially when they may only

use the software afew timesin ayear.

Additionally, consumers may need access to some powerful computing resource that is used too
infrequently to purchase. For example, 3D CAD models of electrical connectors are created in a CAD
package. At certain pointsin the creation of new connectors, an electrical properties analysisisrequired.
The electrical analysis package is expensive and requires vast amounts of computingresources. This
scenario motivates the need to pay for such service when used and to allow that serviceto run on high end
machines not owned by the customer (high end machines might be owned by the customer, but would not
be required at the desk of each user). This savesthe company money in both hardware and software.
Furthermore, multiple companies may provide electrical analysis using the CAD model from aparticular CAD
package. A consumer should be able to select the vendor based on particular details of the service
provided. For example, acheaper service might provide the resultsin 4 hours while a more expensive service
might return the analysisin 1 hour. Certain services might provide a higher level of precisioninthe
calculations. Interacting with these servicesin a consistent manner alows the customer flexibility and

promotes competition as a side effect.

Additionally, certain low-level services should be available in such away that they are accessible by other
programs. Imagine apersonalized electronic subscription to amagazine. A customer gets only the articles
of interest. It should be easy enough to retrieve articles by entering identifying information about the
magazine and user identification credentials. Traveling users might prefer to view these articles from aword-
processor when at home, but might be forced to view them from aweb browser when they are out of town.
Theideaisthat there are services that require some simple information to access and return a basic text (or
html) stream. The returned data can be handled by any number of existing products and should not be
restricted to certain applications. Even if thereisaspecial application that handles el ectronic magazine
subscriptions exceptionally well, thereis no reason it should be limited to one particular magazine.

Obtaining the articlesis a simple function that should be very similar for all electronic subscriptions, so this
application should be able to work with all magazines. Additionally, customersshould not need to subscribe

on ayearly basis. Customers could pay per article or per issue they choose to access.

Clip art could be accessed similarly. Users may have access to anumber of clip art repositories, accessed in
astandard manner, that charge per image downloaded. Again, a more convenient paradigm for using

computer-based resources is needed.

Characteristics of a good solution:

A solution to the above problems should have all of the characteristics listed below. Quite simply,
customers should be able to purchase software on demand and use it. Customers should not be required to
enter user name and password to access this service (we all have too many names/passwords now, who
needs more?). If userscan access servicesin ageneric manner there is no need for special installation or

configuration by the user.

Users of such a system should be able to pay for servicesin some familiar manner. This means that creating
some form of e-money is not areasonable option. Credit card transactions seem to best meet the needs of

the system while remaining familiar to most users.

In many cases the functionality offered can be used without installing software locally. Many common
servicesrequire little input and generate little output, and are therefore reasonably run on remote machines.
Admittedly, certain packages may require local installation, but could still be licensed using a pay per use

model that islargely transparent to the user.

The user should not be required to interact directly with the service, but the service should be able to
describe itself when requested by the user. This becomes especially important when multiple services are
availableto do the same job, asin our electrical properties analysis example. The ideathat a customer would
have a choice further demands that services are easily comparabl e to other services that provide the same

functionality. The consumer will get the best selection, service, and price when competition is supported.

Services should beinterchangeable. This meansthat aclient should be able to talk to all software that
provides the same service using the sameinterface. The interoperability of services helps prevent
customers from being limited to a particular vendor and promotes competition. Furthermore, an
interchangeable service can easily be replaced with a comparable service, based on availability. This
provides some level of fault tolerance, since users have the ability to choose another vendor when their
preferred vendor is having system trouble. The idea of interchangeable services also dictates that users

don’t care what platform the serviceis running on.

When financial transactions are involved, users demand security. Furthermore, some services might
consume or generate sensitive information. These services should be able to provide alevel of security as
required by the nature of the exchanged data. Users of the system will also have varying interest in security
of the data exchanged, so the services should be able to negotiate the detail s of the security with the user.
The actual financial exchange should be safely conducted through an existing tool that isreadily available

and familiar to prospective customers.

The design goals of such a system listed above, are restated here in order of importance.

1. Servicesshould beinterchangeable, which implies they should have a consistent interface. This means
that using a service should require little user interaction. Any interaction should be simple. Thisalso
means that the transactions related to obtaining a service should be largely transparent to the user.

2. Payment for using a service should be convenient. Thisrequires asystem with no additional

passwords and a convenient method of payment. This meansthat paying for a service should be

largely transparent to the user.

Software and components should be available on apay per use basis.

Clients should be able to use a service regardless of the platform the client software runs on.

5. For basic services no local installation should be required.

Eal <

Some of these goals are met by existing systems and are discussed more in the ‘ Related Work’ section.
In the following, we describe a solution that meets all these goals. This description has been split into three
primary parts. Security isan issue throughout thiswork, but is discussed separately after the methodology

isclear. A breif section on the business motivation completes the section.

Thefirst part of the section ‘ Problem Solution’ covers the definition of services so that they can be used
interchangeably. The paradigm, described by the goals above, isreferred to as the I nterchangeable Service
Model (ISM). Asdescribed inthe |SM, service implementations follow a simple devel opment methodol ogy

that promotes a stable system in which programs can access services in awell-defined manner.

The second section describes a sample implementation, for the sake of clarity, but standard CORBA and
Java provide most of the functionality. The primary goal of interchangeable services promotes hiding
transaction details from the user. Hiding the details allows users and larger software packagesto leverage
existing functionality in a convenient and consistent manner. Since the primary goal isinterchangeable
services, thisimplementation is called I nterchangeable Service System (ISS). |SS alows programsto use a
type of service with little or no vendor specific interaction from the user (clearly the user will still need to

make a menu selection or enter criteriafor selecting the service).

Thethird section of the ‘ Problem Solution’ relates to how a client should pay for using a servicein anon-
obtrusive manner. This section describes atechnical solution to payment that is modeled on the use of
credit cardsin retail purchases. This solution for payment services gains flexibility by drawing on the
implementation methodology for interchangeable services. The availability of afinancial service and easy
access to services combine, forming a system in which users can conveniently access software and pay for

services on demand.

The fourth section covers some details of security required by ISM. Since security is hot the main goal of
this project, we address primarily the security measures that should be in place for such a system to be

feasible. This section also covers the exampl e security implemented as part of |SS.

Thefifth and final section addresses the important issue of why companies would choose to make software

available with the restrictions imposed by this methodology. This section isnot intended to provide full

coverage of the businessissues involved, but attempts to persuade the reader that such asystemis

practical.

Most computer users could benefit from software that is convenient and flexible in the manner described
above. Such an extension to the current software licensing paradigms allows more flexibility and therefore
increased productivity for users. Customers could more quickly satisfy their business and personal needs.
Software built on these principles, such as | SS, adapts easily to changes in the environment (i.e. the
introduction of new service providers or unavailability of acertain service provider) and promotes the reuse

of existing components.

Backqground:

CORBA (Common Object Request Broker Architecture) is a specification that abstracts communications
between software modules. In technical terms an implementation of this specification is considered
middleware. This abstraction frees the software module from concern over the programming language or the
hosting architecture of the object it communicates with. CORBA implementations allow methods to be
invoked on remote objects and handle the details of the required communications; remote method
invocations ook just like local method invocations in the program’s source code. CORBA also specifies
additional servicesfor objectsto find exporters either by name or object type. Implementations of CORBA
are well suited for enterprise and internet computing, since they are able to find other objects and use those

object regardless of platform[2,6].

In practice CORBA implementations are purchased from an ORB vendor. The core services as defined by
CORBA are either purchased from the ORB vendor or from another vendor. These services are not strictly
reguired, but they provide important functionality when devel oping applications. Visibroker for Javafrom

Visigenic/Inprise[11] providesthe ORB used for ISS and Prism Technologies provides the OpenFusion suite

that contains the Trading Service [17]. Other core servicesinclude the Naming Service, Transaction Service,

Event Service, Time Service, Collection Service, and Security Service.

Objectsin a CORBA system must understand other objectsin the system. We need acommon way to
describe objects to promote mutual understanding, even if objects are written in different programming
languages. IDL (Interface Definition Language) is a programming language-independent wayfor
programmers to describe their objectsin CORBA. IDL syntax isvery similar to C++ syntax. Most CORBA
implementations allow the programmer to define their objectsin CORBA |IDL, then generate some of the
required source code in the language chosen for the implementation. This code combined with the ORB do

amost al the work required to enable objects for networked use.

To understand | SS we can assume that the network communication portions of Visibroker work; however,
we need more understanding of the Trading Service. In general the trading service allows objectsto register
their existencein the system. Objects register some key information allowing other objectsto query the
Trading Service for objects meeting certain criteria. Thisisamore powerful choice than the Naming Service
where all objects must be located based on the name of the object. There are a number of important details

that must be considered to understand Trading Service.

A servicetype defines alogical grouping for use by the Trading Service. Any object in the system may
register asamember of agroup aslong as the service type has been defined. A service type definesa
template with one or more property names that serve to describe members of that group. In programming,
this concept is analogous to defining a classin C++, then requiring all objectstofill in the valuesfor the
datamembers. Also asin C++, aservice type can be extended through inheritance. Each object that
registers as amember of a service type, known as an exporter, setsthe property values that correspond to
the property names defined by the service type. Property values can be set only once, any number of times,

or can be dynamically defined. For example, we could define a service type of VideoRental. This service

10

type might have a property name ‘ cost’ which hasa corresponding value of type double, sinceit will

represent adollar value.

An object that registerswith the Trading Service as a VideoRental service type must fill in values for that
service type according to the rules specified . In our example, a specific video object might register as
having a cost of $3.75. When an object correctly registers, theresult is called a service offer. Objects use
information in the service typeto find the property namesthey are interested in, then use the property

values from the service offer to find an object of interest.

A service type may be defined to contain dynamic properties. An exporter does not supply avaluefor a
dynamic property when it registers with the Trading Service. Instead the Trading Service waits until an
importer requests that value for some service offer. At that time, the Trading Service asks the exporter for
the value and returns it to the client object. One can see where dynamic properties might come in handy for

agreedy VideoRental that wantsto raise the prices on weekends.

Now that we understand how objects would register with the Trading Service, the next topic to consider is
how to find a particular object from the myriad of objects registered in the system. The most logical way to
focus a search would be to search only for objects of acertain servicetype. Thistype of searchis
supported by the Trading Service and is arealistic choice for static CORBA programs. So, in our example
we would search for all objects registered as VideoRental servicetype. Sincethisislikely to produce more
than asingle match, we can further constrain our search based on property name and val ue pairs and order
the returned matches according to property values. So, bargain shopping objects might search the system
looking for VideoRental (service type) with acost (property name) < 2.00 (property value). Furthermore, the
Trading Service can sort the results of aquery. For example, abargain hunting service may request the
Trading Service return Video Rental objectslisted from |east to most expensive for the VideoRental with the

titte A River Runs Through It. Property names and values can be used as search criteriawithout the

restriction on object type, but searching by object typeisthe only search used in ISS.

1

Problem Solution:

The design goals, listed in “ Characteristics of a Good Solution”, are conceptually very simple and appealing.
However, there are many tools and approaches that could be used to create a reasonable solution. Java and
CORBA have been selected for thisimplementation. These tools supply the building blocks for a
methodol ogy that provides access to services in ageneric manner to applications running on non-
homogenous platforms spread across a network. The conbination of these tools leadsto a solution that is
complicated to develop, but has many advantages. Services are also responsible for registering themselves
as available and supporting aregistered service type. Once created, services of the same type can be

accessed generically by objectsinterested in that particular type of service.

Methodology for Creating Interchangeable Services:

Since creating and using objects in an interchangeabl e fashion is the most important component of 1ISM and
the example implementation, we will consider it first. We generally understand, from the background
section, that services should be created and registered with the Trading Service such that importers can
access them exactly asthey access al offers of agiven servicetype. This meansthat each service
implemented must offer the same interface and register under an equivalent service type. In this case, the
property names will all be the same, as defined by the service type, but the property values can be used to
distinguish among available services. Therefore, each service that corresponds to a given service type will
register as such and provide the property values specific to this service offer. Now the client can accessa
number of services (of the same service type) in a consistent manner and can select a service based on the
property values. Once aclient obtains areference to a specific object viaa service offer, all the methods
defined in the interface can be used. The example client and service, discussed later, will help clarify how

these concepts are implemented in practice.

It isimportant that all offersthat provide the same type of service register with the Trading Service under

the same service type. Thissimplifiesthe search for matching services and provides stability in the

properties a client should consider when selecting a service provider. A service provider might like to
introduce a new service type that extends an existing service type so that they may provide some additional
functionality not provided by the original servicetypeinterface. Although thisisacceptableinthe CORBA

model, this sort of behavior detracts from the consistency of the Interchangeable Service M ethodol ogy.

As mentioned in the design goals a service should be available on apay per use basis. Thissimply means
that designers of systems should provide code to manage the payment transactions. However, all services
should handle the financial transactions using the same interface. A good solution would be for the
financial transaction to be handled by another service. Thisway all services become clients of a banking
service. Handling the process of purchasing software in this manner makes paying for software more

transparent.

By basing any solution on CORBA, we enable clients to use services without concern for the computing
platform of the service provider. We are also able to use CORBA services without installing each service
locally. Javaadds more platform independenceto ISM (and therefore | SS), but clearly the important

platform independenceis provided by CORBA.

The example implementation for this paper concerns a Translation Service. This example service and other
translation servicesimplement a simpleinterface to translate from one human language to another. Thisisa
good example of aservice the may occasionally be useful, since there are times when e-mail would need to
be translated to communicate precisely with another person. Thisfunctionality may be available as amenu
or button selectionin afavorite eemail editor. This menu selection might return alist of choicesto the user,
may use the user’ s configurations to select a preferred vendor, or may select the transl ation provider based
on some default behavior. Inthisway auser can take advantage of any new service providers aswell as
provide some level of failover if the preferred service offer would not be available (assuming another service
offer existed for the desired trandlation). The example implementation, ISS, will clarify the details of the

methodol ogy.

13

Example Implementation of Client and Service:

Small details of the implementation will be addressed as they arerequired. For the sake of simplicity the

topics will be ordered as they arein the source code.

Defining A Service:

To make exporters of the same type interchangeable, each must inherit from the same type. Our example
centers on the idea of aservicethat can translate from one human language to another. So, each object
providing a Translation service should inherit from the TranslationServicel nterface. Thisassures clients
that each translation service object will provide accessto at least this set of methods. The IDL definition of
the base class that should be used by all implementations of translation servicesislisted in Figure 1 and the

IDL definition as used in the example implementation follows in Figure 2.

/I base class interface definition
interface TranslationServicel nterface {

string translate(in string inText, in ServiceContract svcContract,
in string creditCardNumber); /Ithis method actually does the translation
string textDescribingService(); // may provide moreinformation about the service
ServiceContract getServiceContract(); // handlesthe price & time details of atranslation
long serviceContractlsValid(in ServiceContract svcContract); //allows customer to see
/Ihow long until the contract expires

14

Figure1: TheIDL definition for the TranslationServicel nterface

/I aparticular implementation where the : indicates inheritance
interface TestTranslationService: TranslationServicel nterface {

/I no new methods

b

Figure2: The IDL definition of a particular Trand ationService called TestTranslationService that inherits
from the base class of TranslationServicel nterface

The development tools bundled with the ORB will take this definition and create most of the source files
required to support these objects. The ServiceContract object details are addressed later. The important
thing to understand at this point is that a client can now treat areference to a TestTranslationService object
asif it were a TranslationServicel nterface object. As expected the inheritance heirarchy show in Figure 1

and Figure 2 allows us to manipul ate objects of the subclass as instances of the baseclass object.

Registering a Service with the Trading Service:

When an object providing a service starts, it must first find the Trading Service. Since the normal method of
finding the Trading Service (using resolve_initial_references(“ Trading Service’)) was not incorporated into
the Java ORB provided by Inprise, we must find the Trading Service using the | nteroperable Object
Referencefile (thisisaminor coding detail that has no real impact on the problem solution). Once the
Trading Serviceisfound, the service must first check if the service typeisdefined. If the servicetypeis not
yet defined, it must be defined before the service provider can register with the Trading Service. Oncethe
Trading Service understands the service type, the service provider can set the property values as required
by the service type definition. Once the servicetypeisregistered and the values are set for this service

offer, the object providing the translationsis available to importers.

15

A utility class provides methods that check if the Trading Service has a service type registered. If that type
isnot yet registered, the method registersit. Now the method registers the service offer using the
arguments provided by the caller. These methods are quite simple. They provide al the functionality
needed for this example implementation, but would need to be more robust to handle the complexities of a
real implementation. However, they do help a service writer register a service, with the side effect of forcing

the service to register as the preferred base type.

Property Name Property Type [Mandatory or Optional
Translate from String Mandatory
Tranglate to String Mandatory
Cost double Mandatory

Figure 3: Property Structurefor a TranslationService
Mandatory parameters must be defined by the exporter so that the Trading Service will present the service
offer to other objects.

The TranslationServicel nterface type is defined such that a service wanting to register a service offer must
fill in valuesfor the following properties (as seen in Figure 3):

Translate_from: this property isthe language that should be input to the service.

Translate_to: this property should have a string value that represents the language output from the

service.

Cost: This property isthe advertised price for the service.
Discounts may be offered based on customer or volume, but that will be finalized during the ServiceContract
negotiation. The price for a service can quickly change, since the cost property can be updated at the
service provider’ s discretion. In some cases dynamic computation of the service offer’s price would be
ideal, however thisfeatureis not supported in the example implementation. The client locksin a price during

ServiceContract negotiations.

Aninheritance hierarchy can be defined in the trader. Then each service extends the base class and

registers asthe base class. If ahierarchy was defined, arequest for matching services based on a class,

16

would also return any matching subclasses. The standard CORBA approach to service registration
leverages this object-oriented functionality. Since any subclass must provide at |east the same interface as

the parent class, we can be assured that the service provider will understand the client’ s method requests.

The ISM method is a slight deviation from the standard CORBA approach described in the previous
paragraph. Each service registers as the base type using a utility classto simplify this process. Even
though a class may have extended the original functionality, it will still be known to the clients (through the
Trading Service) as abase class object. This masking of the actual type is somewhat superficial, sincea
dynamic client can interrogate the object after obtaining areference. However, this approach lends stability
to the system and discourages coding to a non-standard version of the service type definition. This
standardization isimportant to stability over time. Now, all clients can code to the standard interface (this
interface should be sufficient, sincein theory it would have been defined by a consortium),which prevents
frequents changesin client code. Furthermore, clients cannot take advantage of the additional subclass

functionality in static CORBA without causing exceptions.

So, at this point we have implemented the sample service, TestTranslationService as a subclass of
TranslationServicelnterface. Asexpected no additional public methods are provided by the service. We
proceed to register with the Trading Service as a TranslationServicel nterface type, which hasthe
ramifications discussed above. The distinction between the actual object type and the registration type
should be clear. If we actually knew the object type, we could use all the methodsit provides (in this case
none beyond the base class). However, the clients will believe that this serviceis an instance of a
TrandlationServicel nterface (because of its registration with the Trading Service) and will limit their use to
the base class methods. Now that the serviceis available, it will respond to requests from clients as coded.

In the example implementation TestTranslationService is afacade, and does no actual translating.

Code Discussion for a TranslationService:
The methods defined in the base class do not have implementations. Therefore, all subclasses must define

the specified methods.

17

Thetranslate() method should do the actual translation from one language to another language. For now, it
will be enough to understand that a client passes a string and some other datain, and is returned the results
in another string. The last two arguments pertain to the agreement on price and payment for use of the

service. Thesetwo itemswill be covered when we consider non-obtrusive payment for services rendered in

alater portion of this paper.

The textDescribingService() method takes no arguments and returns a string. Thisisintended to allow the
service provider achance to explain any specialties, promotions, pricing, or any other useful information.
This method isintended to provide information to a human user. This allows a person to select aservice
using more than just the information listed in the service type. For example, a person could pick between the
two services that matched his selection criteria. However, thisis provided only for the benefit of the user; it

is not required to select and interact with service providers.

The getServiceContract() method allows the client to request a contract that contains start and expiration
times, the service price, and any other useful information. The simple ServiceContract object alows limited

contract negations and options and is covered in the section related to payment for services rendered.

The serviceContractlsValid() method allows a possible client to verify acontract. Knowing that agreeing on
timeisimpossiblein a distributed system and understanding that time constraints play an important part in
contract negotiations, we see that we must be able to verify a contract is still valid with the ultimate source.
Since the contract will be measured against time as defined at the service provider, we allow the client to

easily check if acontract is still valid by returning the number of seconds until expiration.

Example Implementation of a Client Program that Uses a TranslationService:
In ISS, an importer has afew simple stepsto take so that it can find and use aservice. Asalwaysthis client
should be able to use any service (having the same service type) in asimple consistent manner. Beforea

service offer can be used the client must be able to find it usingthe Trading Service. Itisimportant that all

18

similar services register with the Trading Service using the same service type. By using the same service
type, we can be assured that the property names and interface will be consistent. Knowing that a
consortium defined the service type, we believe it will be stable over time. These two conditions allow
clientsto find servicesin asimple and stable manner, which was a primary design goal. Once aclient selects
aservice based on availability and application specific code, the object reference can be used. Sincethe

sel ected service extends the TranslationServicel nterface, aclient can be assured any Translation Service will
support the appropriate method calls. Clearly, the client will need to know the base class definition at
compiletime. Thisisas expected when using static CORBA. However, it isimportant to note that aclient

will not need compile-time access to the subclass definition, sinceit is only accessing base class methods.

Trading Service
Tranglate from Translate to Name Cost
English German Svcl 1.50
English Spanish Svc2 2.00
English German Svc3 250
@
Request alist of
services of type
EngToGerman;
Y 1)
cheapest first & . . ()
» return ServicelList Regl_ster with Trading
EngToGerman | Svcl | 150 Service

EngToGerman | Svc3 | 250

) Service
Client
Cost 1.50
Name Svcl
> Type EngToGerman

@

Contact Service of choice

Figure4: Thisdiagram illustrates the events required for aclient to find a service of interest using the
Trading Service.

19

Asseenin Figure 4, aclient will first find the Trading service. Next the client will need to find an acceptable
service. Acceptableis defined by the requirements of each specific application. In this case, we search for
all TranslationServicelnterface services. Searching restrictions use the propertiesto restrict matches to only
English to German translation services. The services matching these criteriawill be sorted from least
expensive to most expensive, at the client’ srequest. In this case the cheapest serviceis contacted to obtain

aservice offer.

Once aclient has chosen a service offer it can access the methods provided. Again, we are temporarily
ignoring the ServiceContract negotiations and payment for the service. In our case the client passes a

string of English text and gets a string of German text in return.

In the section above we have seen how a serviceis offered in ageneric way. Consequently, clients can
access a service in aconsistent manner. It should be clear that if a client program needs a translation
serviceit can access any of the available services using the sameinterface. So, a person who wants a
translation done could select this function from the menu in his e-mail editor. A few inputs may be required
from the user (alternately we could find their preferences stored on disk). A list of matching services might
be returned to the user, but is not required. Once the service provider is selected, the translation can be
completed without further user interaction. The e-mail editor can clearly access all translation servicesin
thismanner. The system, ISS, as described above clearly meets design goal 1 listed in the “ Characteristics
of aGood Solution”. Furthermore, the TestTranslationService is an example of a basic service that requires
no local installation, which meets goal 5 aswell. A local installation would still be required in the case where
we are using an additional module from alarger software package or when the software has a complex user

interface, but the ideais that there are some basic services that can be used without an installation step.

Non-obtrusive payment for services rendered:

Until now, we have ignored how aclient and service agree on the terms for a service and how that service
provider receives payment for the service. Both of these details are critical to a successful community where
clients can access servicesin a predictable way. First, the client and service should agreeon aprice. The
details of contract pricing and expiration are at the discretion of the service provider. This meansthat one
service may offer discountsto preferred customers and another may not, but both will use the same objects
and interfaces. Once client and service have agreed on a price there should be a convenient way to pay for
that service. In 1SS, financial transactions are modeled after retail credit card purchases. A BankServicefills

therole of the credit card company in typical credit card transactions.

Service Contract Negotiationsin ISS:

Itislogical that an object should be used to represent all the information relevant to a contract. An object
simplifies the client/service communication and fits well in the Javal CORBA approach. This object should
be common across al service offersin the service type, but may be different to meet the needs of different
service types. An example ServiceContract object has been defined for use with translation services. The

IDL for this object is shown in Figure 5.

interface ServiceContract {
void setContractBeginDate(in long long bd); //thisisjust anormal long
void setContractExpireDate(in long long ed);
void setContractNumber(in long long cn);
void setContractPrice(in double cp);

long long getContractBeginDate();
long long getContractExpireDate();
long long getContractNumber();
double getContractPrice();

Figure5: TheIDL for aservice contract object.

21

Thelong values are to represent milliseconds since 1970. Milliseconds were used for simplicity. The double
value holds a dollar value that represents the price of atransaction. The first four methods are for use by
the service program creating the object and the last four are for use by the client program. At this point
there is no security to prevent the client from changing the ServiceContract object other than security
measures implemented in the service provider that issued the ServiceContract. In ISSthe service contract is

validated and is expired to prevent contract modification and reuse.

Any Service

@
6 1
6 @ ©) @ e

Client Bank Service

(1) Client requestsservice contract.

(2) Service contract isreturned.

(3) Client requeststhe service according to the contract.
(4) The service provider requests afunds transfer.

(5) The Bank confirms/denies the transaction.

(6) Theresults of the service are returned to the client.

Figure 6: This diagram shows the way client, service, and bank service interact with each other during
contract negotiations and payment for the service.

Figure 6 shows the stepsinvolved in contract negotiations. This example definition of a service contract

only allows one round of negotiation. The client requests an offer and can either choose to accept or

decline. Furthermore, the contract and pricing information are limited to US dollars. Inareal life situation,
thislimitation would not be acceptable. Currently, contracts must be handled by each service. Sincethe
ServiceContract should be the same for all services of the same type, client code can easily able to deal with
these contracts. This constancy also enables all servicesto reuse library code that deals with the

processing involved with contracts.

Since price changes are such a simple matter, we can expect prices to change frequently. ServiceContracts
allow the price of atransaction to be fixed. Now that a customer has afixed price, he can make hisfinal
decision on purchasing the service. If the customer would like to purchase the service, we expect him to
pass the Service Contract object back to the service provider, pass his credit card information, and any other
application specific data structures. In the running example, the client will pass only astring in addition to
credit card and contract information. We expect a service to hill the client’ s account when the transactionis

complete to prevent aclient being billed for ajob that did not compl ete as expected (i.e. acrash occurred).

Payment for the Service:

Now that we have a client and service provider that agree on aprice for aservice, we need a banking service
to provide the banking transactions. In our normal lives as consumers, we frequently use a credit card to
pay for goods and services. We establish identity and credit limit with this one company. All participating
vendors honor our payment viathat banking service. This situation allows usto purchase goods without
having to reveal much about ourselvesto retailersand isfamiliar to most people. It would be desirable for

software to be purchased in the same way.

We have aneed for an online credit card service. In|ISS, theinterface for the credit card based transactions
is defined in the BankServicel nterface class. The example implementation of the BankServicel nterfaceis
called FunnyMoneyBankService. Aninterfaceisdefined for all BankServices, so that all accessis
standardized. Clearly, thisisjust another service implementation based on ISM. It seemslikely that there
will be more than one credit card-like service available in the world, so the interchangeabl eness makes sense.

The BankServicel nterface defines arudimentary banking interface. All credit card-like servicesin an

implementation, like I SS, would inherit from the BankServicel nterface IDL definition presented in Figure 7.

The IDL for FunnyMoneyBankService, which inherits from BankServicel nterface, islisted in Figure 8.

interface BankServicel nterface {

exception TransactionDeniedExceptiorn{ } ;
string creditCardTransaction(in string amount,
in string fromAccount,
in string toAccount)
raises (TransactionDeniedException);

}; //lend of bankService decl

Figure7: ThelDL for aBank Servicethat will provide credit card-like transaction between clients and
vendorsin the system.

interface FunnyM oneyBankService:BankServicel nterface {

/I no new methods, see base class
b

Figure8: ThelDL for an example bank service called FunnyMoneyBankService that has no additional
public methods beyond those dictated by the base class. The bank service might contain other classes, like
Account, that are used in processing. These methods and objects are private and therefore not exposed in
theinterface.

The BankServicel nterface defines the methods that a minimal credit card-like service might offer. The
BankService in ISSworks similarly to anormal credit card. The customer and merchant account numbers are
supplied with the amount of the transaction. Figure 6 shows the stepsinvolved in payment for service. In
this case, an exception has also been defined to notify the caller of error situations. The
TransactionDeniedException in Figure 7 lets the caller know that the transaction was denied, but gives no
further explanation. A more powerful solution would have more precise exceptions, but this serves as an

example of the correct approach. A credit service like the FunnyMoneyBankService will have lotsof

24

information about its customers and many rules about transactions. In the example implementation, the
example bank service will not allow a person to exceed their credit limit. It will not allow manipulation of
fundsin anon-existent account, and soon. The business rules and the data stored in the example bank

service are not important for this example, so we can assume it works reasonably.

This section has described how a customers pay for a service they want to use. Theideaissimple and
mostly transparent to the user. Using credit cards leverages existing financial infrastructure and financial
tools already possessed by the customer. Since customers do not have an account with the vendors, there
is no need to remember extra passwords or handle billing from each individual service. Clearly this payment
arrangement meets the second design goal of the system, convenient payment, and at the same time

supports the pay per use paradigm, which was design goal 3.

Security Features of the System:

CORBA traditionally controls who can access a particul ar object through an access control list (ACL). This
administrative burden is not acceptable for the system described in this paper. Theideaof aservice
contract places the burden of authorization onthe exporting object, so we no longer need the ACL to

enforce such rules.

A distributed system such as | SS without secure communicationsis not feasible. In the proposed system,
there are two separate needs for security. First we must secure the information involved in the financial
transaction. Second, we must secure the information exchanged between aclient and a service provider.
Thefinal two sections on security discuss the CORBA Security Service offerings and away that all

communications could be secured.

Financial Exchange Security:
A number of reasonable options are available for securing the exchange of financial information. In|ISS,

credit card information is sent out in the clear to the vendor. Unfortunately, it isall too easy to discover the

25

account information while it travels on the network. One reasonable solution would be to encrypt the credit
card number using SET (Secure Electronic Transaction), afinancial industry standard, or some other
standard encryption scheme[5]. Inthis manner, neither the vendor nor hackers would be able to “see” the
credit card number, but the bank could still verify the accountsin question to make the funds transfer.
Public key encryption could also be used, so that the bank could be certain that the credit card belonged to

the supposed user.

Security of Data Exchanged During Service Transaction:

So far we have ignored the security of data exchanged between the client and service provider. Some data
might not require any security at all, while other data may represent proprietary information and require very
stringent security measures. The | SSimplementation uses public key encryption combined with symmetric
encryption to securely transfer the text input and output of the translation service as an example of a
possible solution. The stepsinvolved in securing datain the example implementation are shown in Figure 9
below. Inthe exampletranslation, only the text string is encrypted. The financial information is transmitted
insecurely. For application specific data, simply securing all communications would be better than no
security at all. However, avariable level of security negotiated between the client and service would be the

best solution.

26

Client Request ServiceContract Service

Contract Returned

Send Public Key

Send Public Key

<

Translate Text using encoded Text,
SvcContract & Credit Card #

Return translated text encrypted

<

Figure 9: Thisdiagram illustrates a sample exchange of information between a client and the
TestTranslationService. Note that not all communications are secure, particularly the credit card
information.

CORBA Security Service:

SECIOP (Secure IOP) is now available as part of the CORBA Security Service. Thisallowsall
communication to be secured, but does not allow the level of security to change based on user needs.
Although thiswould be better than no security it is not the best solution for the system described. When

the project began, there were no implementations of the Security Service freely available.

Additional Waysto Secure All System Communications:
Visibroker has hooks built in so that programmers can insert code to encrypt all inter-object

communications. NetCrusader has used these hooks to deliver aproduct that doesjust that [9]. These are

27

different security approaches available, but using any of these is outside the scope of this project.

Additionally, the NetCrusader product was not freely available during the implementation of I SS.

Any solution for securing the inter-object communications should be flexible. The client and service
provider should agree in the type and strength of security that will be used for the exchange. Secure
Sockets Layer (SSL) is based on this principle, and therefore might be agood choice. SSL over |1OP
(Internet Inter-ORB Protocol) exists and is now provided separately from the Security Service, for the

Visibroker product. This product was not freely available during the implementation of 1SS

Ultimately the security features of the system asit isimplemented areinsufficient. However, one of the
above methods could be employed to transform 1SS in to a secure system. At thistime, it seemsthat SET
should be employed to manage the financial portions while SSL should be the solution to provide the

flexibility desired for client/service communications.

Practical Application in Business:

For service providers, ISM makes the most sense in service areas where there are few providers of a
particular service, and in cases where alarge company dominates, but there are many other smaller service

providers.

Trandlation is an example of a service where there are currently few providers, although, there are some free
rudimentary services available on the Internet. Inthis casetheinvolved parties all benefit from the
standardization, because the services become more visible and accessible to prospective customers. Since
thereis clear motivation for consensus and the interface should be technically simple, we can conclude that
astandard interface will be agreed upon. The group might form a consortium, working together to produce a
simple user interface to access translation services. Translations available will likely range from those done
quickly by machine to those done precisely by bi-lingual humans. Although many of the service providers

will offer the same service, speed, cost, and quality will differentiate them from one another.

28

I n the situation where there are many small companies and afew large companiesin amarket, the larger
companies often control the market share. In this case the smaller companies are clearly motivated to work
together to take market share from the larger providers. Thus, the smaller companies will have a strong
motivation to find acommon interface, while the larger companieswill likely not participate in the interest of
protecting their advantage. The larger company might then be forced to participate, astheir competitionis

providing a desirable feature to customers.

In the above ways, communitieswill form. Otherswill choose to join to make their product available to
another market segment, while others will participate at the request of their customersand potential
customers. Participating in such acommunity becomes another marketing tool. Indeed, an infrequent
customer may eventually use the product enough to purchase afull license, the financial mainstay of the

company.

Related Work:

There are anumber of systemsin use or proposed that share certain features with ISM and/or ISS. Thefirst
section coversideas similar to 1SM, but not close enough to merit detailed discussion. Thefinal two
sections more compl etely cover implementations that are most similar to ISS.

Similar Ideas:

The systems described below demonstrate that the pay per use paradigm has found a place in the software
industry. Most of these are simple proprietary examples of a concept |ess generic than the goals of ISS. In
most of the examples below one must install the software first, then pay for the usage. Thistype of pay per
use model meets only one of the design goals of this system. In these cases, where the software package
must be installed locally, the proposed paradigm for purchasing usage would save users the work of calling

the vendor to purchase more usage.

Pay Per Clik isapay per use Application Service Provider. The company promotes the idea of paying per
use instead of the monthly-based fees typical of Application Service Providers. They simply offer the

service of billing the customer for fine-grained usage, for which they take a percentage of the profit. They
enable metering of software to prospective customers. Pay Per Clik shares the pay per use goal, but does

not attempt to provide servicesthat are interchangeable [16].

e*ECAD Inc. is offering its chip design software for use by pay per use and pay per hour licensing. This
will allow customers to access the tools for minimal cost based on usage rather than purchasing the
software for thousands of dollars. Thisisagood example of how one might install software locally, then
pay for only thetimeitisused. Thisisa proprietary solution that does meet some of |SM’s design goals,
but it does not meet the requirement that services are interchangeable [8]. Face2Face Inc. providestheir
facial motion analysis software similarly. Inthiscase, the customer pays based on the amount of video

processed by the software [10].

Lacert provides programs to accountants for calculating state and federal taxes. The state tax returns can be
purchased for aone time unlimited usage fee or in apay per use model. The easy segregation of the
components by state and infrequent need for an accountant to do an out of state return makes this model
appealing for both parties. This practice has been going on for anumber of yearsin tax software. Lacert
may have implemented the software so that all state tax returns have a standard interface to obtain the
license. Since the processing is done locally, one objective of interchangeabl e services has not quite been
met. Thismodel islike purchasing separate components of alarger system. Lacert’'s system requiresa
phone call to purchase alicense, which could be more convenient. Currently, there are effortsto allow
customersto purchase licenses online, but it will not be transparent to the user [3].

Kaa

Kala[4] isasystem that ismoresimilar to ISS. Kalaisquite different inimplementation strategy, but shares

enough design goals that further discussion is appropriate. Kalaisan API to create licensing schemes.

Therefore, it can be used to license software in the standard way, pay per user, or to license software using

the pay per use paradigm. Components and resourcesin Kalaare very similar to services as presented here.

KaaOverview:
When using Kala a user negotiates pricing with the resource. Thispriceis*provisional”, which means

estimated, since the component might use another component and incur higher charges than expected.
There is amaximum and minimum provisional charge provided before the client makes the purchase. After
the two parties agree on the provisional charge accessis granted to the component. Charges are only
incurred if theresourceisused. The actual charges are handled by the resource manager once both parties
agree (it also does some sanity checking on thereal charges against the estimated charges). Each
component is responsible for computing billing information based on its particular billing algorithm. All
interactions between user and resource are conducted in meter units, not normal currency. Billing reports
are generated by the resource manager using meter units. Conversion to real money and actual billing must
be handled by a bank-like entity. Users may have credits added to their account through the exchange of
cookies with the vendor. Using cookies, a customer can securely purchase meter unitsto be used at alater
time.

Some Specific Points:

The resource manager is responsible for uniquely identifying the resources and the clients (clients are al'so
resources, but we will call them clientsto be clear). Storing all the resource information in one placeis
subject to asingle point of failure. Maintaining alist of clientsisan extraadministrative step that can be
avoided if users do not need local accounts. In aCORBA system, the Trading and Naming services handle
the identification of resources. It is preferable to use the existing functionality of CORBA rather than re-

inventing code to handle services for joining and |eaving a community.

Service contractsin |SS have no user accounts associated with them, since customers have no local

accounts by which to reference them. However, service contracts apply to a specific service and maintin

expiration information. Licensesin Kalamaintain the expiration and related resource, but also maintain the

31

user information about the user who was issued the license. Thereisadistinction to be made. Service
contracts by themselves are only a promise to provide a service at a particular price until some expiration
time. The ServiceContract must be submitted with payment to actually use aservice. A licenseisprepaid

and entitles the bearer to use of the service within the restrictions imposed.

Cookie exchangesin Kala allow the user to obtain enough meter units to access a resource multiple times
without requiring afinancial exchange for each use. Meter units are exchanged for each use of aresource.
Although this reduces the number of financial transactions, it requires users to have accounts with each

resource to allow tracking of meter units purchased.

Kalahandles the revenue collection by moving the credits from the user account to the supplier account.
Thereis aseparate billing step where meter units need to be converted and billing must be done. The entity
that does the conversion and periodically pays those resources with a positive balance is nebulously
described. 1SS does not deal with meter units for two reasons. First, thisisabig responsibility; savvy users
should be wary that this account transfer isindeed safe and correct. Furthermore, reusing existing financial
solutionsis preferable to creating a new non-standard solution.

Second, there are plenty of financial institutions that exist just for securing financial transactions and

handling billing. Why reinvent the wheel ?

AsinISS, Kalaintendsto make paying for each use transparent to the client. Exchange of metered unitsis
transparent, but the actual financial exchangeisnot. In[6], the financial exchange appearsto be an offline
process. This model may be acceptable to users who purchase all their software from afew vendors, but is

not astransparent asin ISM.

Much of [4] walks through examples of how Kala can handle various forms of licensing. Much of that

discussion focuses on installing software locally, then paying per use. This usage model is addressed by

ISSaswell. InISS, an installed application might have menu options that allow the user to pay for some

32

amount of usage and resultsin alicense file being downloaded to their machine. Software that anticipates
repeated use by individual clients might support aslightly different contract model or may handle the details

of the service contract somewhat differently than in the Transl ationService example.

Partly because the authorsintend for components to use other components as needed during execution,
Kalainvolves acomplex system of estimated and actual charges. This meansthat the cost for a“run” is not
known until execution iscomplete. A simple system of paying aclear fee up front is preferable. InISS, the
advertised fee for a system could be dynamically generated based on the nature of the client’ s request
resulting in asum of the cost of services used indirectly. However, the paradigm described in this paper is
limited to static up-front charges and no provisions have been made for variations during service execution.
The authors of [4] point out that the system should be recursive, meaning that resources can use other
resources. It should be clear that |SM supports a service using other services. For example, all services use

aBank Service.

Kalais areasonable system to provide licensing for software a user already has and also works nicely to
activate specific separately purchased features of the software. The ability to activate specific components
was adesign goal this project shared with Kala. However, it does not manage interchangeabl e resources in
ageneric reusable manner, which is an important design goal of the described system. Ultimately the
distinctionisthat Kalaisan API for licensing software and components, while |SM primarily focuseson a

methodol ogy to allow the purchasing of servicesthat are interchangeable.

JINI:
ISM shares a number of design goalswith JINI, although the implementations use some different

technologies. JINI isalayer on top of Java provided by Sun Microsystems Inc [1]; | SS combines the use of

Javawith CORBA.

In both systems we have the idea of obtaining a contract with another resource in the system. Thetwo

partiesinvolved work out the details of this agreement. In JINI these |eases may be obtained to hardware

and software resources. Theideafor ServiceContractsis similar to the JINI leasing approach. In JINI leases
can automatically renew themselves. However, leases have no concept of paying for resource usage asin
the Service Contract model. JINI isintended to allow resourcesto find each other on an internal network, so
charging for usage is not an important consideration. Leasesin JINI are defined for the entire system. This
means that all services use the same lease object. Thismodel isan advantage for JINI because all resources
use the same lease object. 1SS providesthe flexibility for different types of servicesto have different

contracts when required.

In both systems programs look for avail able resources matching the program’ s needs at run time. We will
use printing to illustrate the similarities between JINI and ISS. When one needs to print a document, the
word processor finds all printers available. From that list, clients select the service that is closest or hasthe
features needed. By not relying on a specific printer, a user can avoid problems when that particular printer
isnot available. In JINI, thisisreferred to as the lookup and discovery protocol. In a CORBA based

system, the Trading Service functions similarly to the look-up servicein JINI.

JINI programs, both client and service, are limited to Java (with the exception of wrapping other
programming languages, like C). Clearly a CORBA based system has the advantage of not limiting the

programming language of the client or the service provider.

In both systems we have the ideathat there are standard components that should have acommon interface.
If we continue the printing example, we realize that all printers do the same basic thing and have some
common features. For examplethey have alocation in the building, they may support double-sided printing,
may support color printing, may support certain file formats, and may support a number of printing
resolutions. So, al printers should have a common interface that can be accessed by other programs.
Through the interface we should be able to ascertain the features of a particular printer, and send our print
job to the printer we have selected. In both systems a common interface must be defined and each service

must implement that interface.

Ultimately, JINI and CORBA share a number of ideas, many of which were critical to meeting the design
goals of thisproject. However, JINI limits users to the Java programming language where a CORBA based

system does not. Additionally, JINI does not directly support the pay per use model.

Suggestions for Further Work:

This example Bank Service accepts al charges that are proposed by the vendor. In normal credit card
transactions we have signatures and shipping addresses to provide some checks on legitimacy. When
working with computing resources, we have eliminated both these checks on the system. A reasonable
solution would be for the bank to contact the client for approval of the proposed charges. A better
alternative would be for the client to notify the Bank Service that it will accept charges of some amount from
aspecific vendor. Then the Bank Service can be sure the charges are legitimate if it can positively identify

the customer (via public key or some other security means).

The security model could be extended as described in the section ‘ Security Features of the System’. Since
Security was not amain focus of ISS, the example service implements encryption on asmall part of the
exchanged data, simply to show that it could be done when required. Asmentioned, acombination of SET
and SSL should be adequate. Using an implementation of the SET standard would require significant
changesto the current architecture of 1SS. Using public key encryption for just the credit card numb er
would be simpler to integrate, but requires that we have akey server. A reasonable security model would
eliminate the need for the suggestion in the paragraph above, since we could now assure the legitimacy of

both partiesin the transaction.

This system focuses on using services infrequently and generically. Certainly there is aneed for pay per use
software that will be used more frequently. This system requires the negotiation of a contract and a

financial transaction for each use of aservice. Whilethismodel is appealing inits simplicity, it resultsin

unnecessary overhead when the service is accessed frequently. The paradigm used by Kala might prove to
be a better solution when the service is accessed routinely. If acustomer could purchase some number of
meter units, we could avoid the extra financial transactions and the two parties involved would simply
exchange meter units. In this scenario, ServiceContracts would be negotiated using meter unitsinstead of
dollars. Unfortunately, thisrequires extra support for aprotocol for purchasing meter units and more
importantly forces the client to have an account with the vendor. Avoiding alocal account and related login

credentials was adesign goal of this system.

A more complete ServiceContract might have the user’ s credentials optionally supplied. Thiswould allow
the service provider to offer particular users special deals or more personalized service. Additional methods
to support multi-round contract negotiations would also be an imp rovement to the service contract

negotiation process.

Conclusion:

The introduction proposed five goals for this system. They are summarized here for convenience.

Services should be interchangeable, which implies they should have a consistent interface.
Payment for using a service should be convenient.

Software and components should be available on a pay per use basis.

Services should be available on al client platforms.

For basic services no local installation should be required.

g wbhPE

The primary goal of ISM was to provide access to similar services through a consistent interface. The
implementation of |SS requires servicesto register under acommon service type and therefore similar
services share aninterface. This consistency allows client programs to easily access services, even if
different vendors provide them. Thisdesign feature isaslight deviation from the normal CORBA approach.
The JINI model also supports consistent interfaces, but does not meet some of the other goals. The other

systems discussed do not meet thisimportant need.

Payment for use of servicesin ISSis modeled after the credit card transaction in retail purchases. This

model is convenient and familiar to most users. This payment model eliminates the need for accounts with

each service provider. Kalaand many other systems require the overhead of accounts with each service
provider, which resultsin unnecessary administration and user interaction. Asin retail transactions, the

customer has very little involvement in the funds transfer when using I SS.

Goal three suggests that areasonabl e system should support a method to pay for services when used.
Infrequently used services or components motivate thisgoal. The pay per use paradigm is not new to
computing. Asseen in the related work section, there are a number of companies providing software using
thisbilling model. Clearly pay per use software isan ideathat is gaining support. However, these

proprietary systems are at disadvantage when compared to a system based on CORBA.

Goalsfour and five are inherent to ISS since it uses Javaand CORBA. Client programs can bewrittenin
Javato gain aplatform independence advantage, but Javais not required to work with the CORBA services.
Hence, client programs can be written in any CORBA -enabled language as required for the particular
application, or in Javato maintain platform independence. Other systems restrict the platform or client

program implementation language, or require local installation.

Throughout this paper we have seen examples of how the flexibility of ISM, built on the five goals, benefits
the service provider and the customer. Although a number of existing systems address a subset of these
goals, ISM isuniqueinthat it satisfiesthem all. Thus, the power and flexibility of ISM surpasses that of

existing systems for licensing software and for providing interchangeabl e services.

37

Bibliography:

[1] Edwards, W. Keith, Core JINI, Prentice-Hall Inc, Upper Saddle River, New Jersey, 1997

[2] Orfali, Robert et a, Instant CORBA, John Wiley and Sons Inc, New Y ork, New Y ork, 1997

[3] Park, Robert, On Lacert Tax Returns, private conversation, Jan 2001

[4] Simmel, Sergiu et a, Metering and Licensing of Resources: Kala's General Purpose Approach,
www.cni.org/docs/ima-ip-workshop/Simmel .Godard.html, Nov 1997

[5] Stallings, William, Cryptography and Network Security — Principles and Practice (second edition),
Prentice-Hall Inc, Upper Saddle River, New Jersey, 1999

[6] Vogal, Andreas et a, Java Programming with CORBA (second edition), John Wiley and Sons Inc, New
York, New York, 1993

[7] Chamberworks Inc., http://www.chamberworks.com

[8] EE Times, http://www.eetimes.com (article on pay-per use e ECAD, Nov 2000),

http://www.eoenabl ed.com/edtn/out.asp?a=EET & i=e%2A ecad& n=33586385& tid=0& url=http%3A %2F%2F
wwwe2Eeet%2Ecom%e2Fstory%2FOEG20001228S0014& title=Extraction+tool +f eatures+per%2Dhour+licensi
ng

[9] Entegrity Solutions, http://www.entegrity.com, February 2001

[10] Face2Face Inc., http://www.f2f-inc.com , February 2001

[11] Inprise http://www.inprise.com or http://www.visibroker.com, February 2001

[12] Kiosk Software Inc., http://www.kioskco.com, February 2001

[13] Netshift Software, http://www.netshift.com, February 2001

[14] Netstop Kiosk Software, http://www.netstop-kiosk.com, February 2001

[15] OMG, Security Services Specification, OMG,

http://www.omg.org/technol ogy/documents/formal/corba_services available_electro.htm, May 2000

[16] Pay-Per-Clik, http://www.payperclik.com, February 2001

[17] Prism Technologies, http://www.prismtechnol ogies.com, February 2001

[18] Programmer and Reference Material for Visibroker, http://www.inprise.com/visibroker/download,
February 2001

[19] Satmine LLC, http://www.saltmine.com, February 2001

